Principal physical parameters of the conical pendulum calculated directly from the orbital period

The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics education 2020-03, Vol.55 (2), p.25001
Hauptverfasser: Dean, Kevin, Demir, Firuz, Bouchalkha, Abdellatif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25001
container_title Physics education
container_volume 55
creator Dean, Kevin
Demir, Firuz
Bouchalkha, Abdellatif
description The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400     L     2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.
doi_str_mv 10.1088/1361-6552/ab531b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6552_ab531b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1238778</ericid><sourcerecordid>2733148867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEmW5c0GKxJVQL_GSI6rKpkpwgLPl2I7qKomD7Rz670kaVE6cZnnfzGgeADcIPiAoxBIRhnJGKV6qihJUnYDFsXUKFhASlJcIw3NwEeMOQlhwARdAfQTXaderJuu3--j0lKigWptsiJmvs7S1mfbdrNjODM3QZmOhh0YlazLjgtWp2Wd18O2B9qFy6UAH580VOKtVE-31b7wEX0_rz9VLvnl_fl09bnKNC5pypAgtDOS1pQxiVVNdWs0KTmxZmspUlkKsYYm55uNLyDKDS0aKshYMa0s5uQR3894--O_BxiR3fgjdeFJiTggqhGATBWdKBx9jsLXsg2tV2EsE5WSknFyTk2tyNnIcuZ1Hxnf0EV-_IUwE52LU72fd-f7v5r_rfgCyln4_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733148867</pqid></control><display><type>article</type><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><source>Institute of Physics Journals</source><creator>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</creator><creatorcontrib>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</creatorcontrib><description>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400     L     2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</description><identifier>ISSN: 0031-9120</identifier><identifier>EISSN: 1361-6552</identifier><identifier>DOI: 10.1088/1361-6552/ab531b</identifier><identifier>CODEN: PHEDA7</identifier><language>eng</language><publisher>Brecon: IOP Publishing</publisher><subject>Acceleration ; Angular momentum ; Apex angle ; Calculus ; Centripetal force ; Charts ; Computation ; Energy ; Kinetic energy ; Kinetics ; Laboratory Equipment ; Mathematical analysis ; Orbits ; Parameters ; Pendulums ; Physical properties ; Physics ; Potential energy ; Principals ; Scientific Concepts ; Strings</subject><ispartof>Physics education, 2020-03, Vol.55 (2), p.25001</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</citedby><cites>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</cites><orcidid>0000-0003-4336-4237 ; 0000-0002-0585-588X ; 0000-0002-3351-0395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6552/ab531b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1238778$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Dean, Kevin</creatorcontrib><creatorcontrib>Demir, Firuz</creatorcontrib><creatorcontrib>Bouchalkha, Abdellatif</creatorcontrib><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><title>Physics education</title><addtitle>PhysEd</addtitle><addtitle>Phys. Educ</addtitle><description>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400     L     2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</description><subject>Acceleration</subject><subject>Angular momentum</subject><subject>Apex angle</subject><subject>Calculus</subject><subject>Centripetal force</subject><subject>Charts</subject><subject>Computation</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Laboratory Equipment</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Pendulums</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Principals</subject><subject>Scientific Concepts</subject><subject>Strings</subject><issn>0031-9120</issn><issn>1361-6552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEmW5c0GKxJVQL_GSI6rKpkpwgLPl2I7qKomD7Rz670kaVE6cZnnfzGgeADcIPiAoxBIRhnJGKV6qihJUnYDFsXUKFhASlJcIw3NwEeMOQlhwARdAfQTXaderJuu3--j0lKigWptsiJmvs7S1mfbdrNjODM3QZmOhh0YlazLjgtWp2Wd18O2B9qFy6UAH580VOKtVE-31b7wEX0_rz9VLvnl_fl09bnKNC5pypAgtDOS1pQxiVVNdWs0KTmxZmspUlkKsYYm55uNLyDKDS0aKshYMa0s5uQR3894--O_BxiR3fgjdeFJiTggqhGATBWdKBx9jsLXsg2tV2EsE5WSknFyTk2tyNnIcuZ1Hxnf0EV-_IUwE52LU72fd-f7v5r_rfgCyln4_</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Dean, Kevin</creator><creator>Demir, Firuz</creator><creator>Bouchalkha, Abdellatif</creator><general>IOP Publishing</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4336-4237</orcidid><orcidid>https://orcid.org/0000-0002-0585-588X</orcidid><orcidid>https://orcid.org/0000-0002-3351-0395</orcidid></search><sort><creationdate>20200301</creationdate><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><author>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Angular momentum</topic><topic>Apex angle</topic><topic>Calculus</topic><topic>Centripetal force</topic><topic>Charts</topic><topic>Computation</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Laboratory Equipment</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Pendulums</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Principals</topic><topic>Scientific Concepts</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dean, Kevin</creatorcontrib><creatorcontrib>Demir, Firuz</creatorcontrib><creatorcontrib>Bouchalkha, Abdellatif</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Physics education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dean, Kevin</au><au>Demir, Firuz</au><au>Bouchalkha, Abdellatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1238778</ericid><atitle>Principal physical parameters of the conical pendulum calculated directly from the orbital period</atitle><jtitle>Physics education</jtitle><stitle>PhysEd</stitle><addtitle>Phys. Educ</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>2</issue><spage>25001</spage><pages>25001-</pages><issn>0031-9120</issn><eissn>1361-6552</eissn><coden>PHEDA7</coden><abstract>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400     L     2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</abstract><cop>Brecon</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6552/ab531b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4336-4237</orcidid><orcidid>https://orcid.org/0000-0002-0585-588X</orcidid><orcidid>https://orcid.org/0000-0002-3351-0395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9120
ispartof Physics education, 2020-03, Vol.55 (2), p.25001
issn 0031-9120
1361-6552
language eng
recordid cdi_crossref_primary_10_1088_1361_6552_ab531b
source Institute of Physics Journals
subjects Acceleration
Angular momentum
Apex angle
Calculus
Centripetal force
Charts
Computation
Energy
Kinetic energy
Kinetics
Laboratory Equipment
Mathematical analysis
Orbits
Parameters
Pendulums
Physical properties
Physics
Potential energy
Principals
Scientific Concepts
Strings
title Principal physical parameters of the conical pendulum calculated directly from the orbital period
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20physical%20parameters%20of%20the%20conical%20pendulum%20calculated%20directly%20from%20the%20orbital%20period&rft.jtitle=Physics%20education&rft.au=Dean,%20Kevin&rft.date=2020-03-01&rft.volume=55&rft.issue=2&rft.spage=25001&rft.pages=25001-&rft.issn=0031-9120&rft.eissn=1361-6552&rft.coden=PHEDA7&rft_id=info:doi/10.1088/1361-6552/ab531b&rft_dat=%3Cproquest_cross%3E2733148867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733148867&rft_id=info:pmid/&rft_ericid=EJ1238778&rfr_iscdi=true