Principal physical parameters of the conical pendulum calculated directly from the orbital period
The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration...
Gespeichert in:
Veröffentlicht in: | Physics education 2020-03, Vol.55 (2), p.25001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25001 |
container_title | Physics education |
container_volume | 55 |
creator | Dean, Kevin Demir, Firuz Bouchalkha, Abdellatif |
description | The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400 L 2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined. |
doi_str_mv | 10.1088/1361-6552/ab531b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6552_ab531b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1238778</ericid><sourcerecordid>2733148867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EEmW5c0GKxJVQL_GSI6rKpkpwgLPl2I7qKomD7Rz670kaVE6cZnnfzGgeADcIPiAoxBIRhnJGKV6qihJUnYDFsXUKFhASlJcIw3NwEeMOQlhwARdAfQTXaderJuu3--j0lKigWptsiJmvs7S1mfbdrNjODM3QZmOhh0YlazLjgtWp2Wd18O2B9qFy6UAH580VOKtVE-31b7wEX0_rz9VLvnl_fl09bnKNC5pypAgtDOS1pQxiVVNdWs0KTmxZmspUlkKsYYm55uNLyDKDS0aKshYMa0s5uQR3894--O_BxiR3fgjdeFJiTggqhGATBWdKBx9jsLXsg2tV2EsE5WSknFyTk2tyNnIcuZ1Hxnf0EV-_IUwE52LU72fd-f7v5r_rfgCyln4_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733148867</pqid></control><display><type>article</type><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><source>Institute of Physics Journals</source><creator>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</creator><creatorcontrib>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</creatorcontrib><description>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400 L 2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</description><identifier>ISSN: 0031-9120</identifier><identifier>EISSN: 1361-6552</identifier><identifier>DOI: 10.1088/1361-6552/ab531b</identifier><identifier>CODEN: PHEDA7</identifier><language>eng</language><publisher>Brecon: IOP Publishing</publisher><subject>Acceleration ; Angular momentum ; Apex angle ; Calculus ; Centripetal force ; Charts ; Computation ; Energy ; Kinetic energy ; Kinetics ; Laboratory Equipment ; Mathematical analysis ; Orbits ; Parameters ; Pendulums ; Physical properties ; Physics ; Potential energy ; Principals ; Scientific Concepts ; Strings</subject><ispartof>Physics education, 2020-03, Vol.55 (2), p.25001</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</citedby><cites>FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</cites><orcidid>0000-0003-4336-4237 ; 0000-0002-0585-588X ; 0000-0002-3351-0395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6552/ab531b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1238778$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Dean, Kevin</creatorcontrib><creatorcontrib>Demir, Firuz</creatorcontrib><creatorcontrib>Bouchalkha, Abdellatif</creatorcontrib><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><title>Physics education</title><addtitle>PhysEd</addtitle><addtitle>Phys. Educ</addtitle><description>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400 L 2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</description><subject>Acceleration</subject><subject>Angular momentum</subject><subject>Apex angle</subject><subject>Calculus</subject><subject>Centripetal force</subject><subject>Charts</subject><subject>Computation</subject><subject>Energy</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Laboratory Equipment</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Pendulums</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Principals</subject><subject>Scientific Concepts</subject><subject>Strings</subject><issn>0031-9120</issn><issn>1361-6552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EEmW5c0GKxJVQL_GSI6rKpkpwgLPl2I7qKomD7Rz670kaVE6cZnnfzGgeADcIPiAoxBIRhnJGKV6qihJUnYDFsXUKFhASlJcIw3NwEeMOQlhwARdAfQTXaderJuu3--j0lKigWptsiJmvs7S1mfbdrNjODM3QZmOhh0YlazLjgtWp2Wd18O2B9qFy6UAH580VOKtVE-31b7wEX0_rz9VLvnl_fl09bnKNC5pypAgtDOS1pQxiVVNdWs0KTmxZmspUlkKsYYm55uNLyDKDS0aKshYMa0s5uQR3894--O_BxiR3fgjdeFJiTggqhGATBWdKBx9jsLXsg2tV2EsE5WSknFyTk2tyNnIcuZ1Hxnf0EV-_IUwE52LU72fd-f7v5r_rfgCyln4_</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Dean, Kevin</creator><creator>Demir, Firuz</creator><creator>Bouchalkha, Abdellatif</creator><general>IOP Publishing</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4336-4237</orcidid><orcidid>https://orcid.org/0000-0002-0585-588X</orcidid><orcidid>https://orcid.org/0000-0002-3351-0395</orcidid></search><sort><creationdate>20200301</creationdate><title>Principal physical parameters of the conical pendulum calculated directly from the orbital period</title><author>Dean, Kevin ; Demir, Firuz ; Bouchalkha, Abdellatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1a354d07fe5602af5c9ec6473e99dbdbe502c0927c76551e6d296349f862ce573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Angular momentum</topic><topic>Apex angle</topic><topic>Calculus</topic><topic>Centripetal force</topic><topic>Charts</topic><topic>Computation</topic><topic>Energy</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Laboratory Equipment</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Pendulums</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Principals</topic><topic>Scientific Concepts</topic><topic>Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dean, Kevin</creatorcontrib><creatorcontrib>Demir, Firuz</creatorcontrib><creatorcontrib>Bouchalkha, Abdellatif</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Physics education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dean, Kevin</au><au>Demir, Firuz</au><au>Bouchalkha, Abdellatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1238778</ericid><atitle>Principal physical parameters of the conical pendulum calculated directly from the orbital period</atitle><jtitle>Physics education</jtitle><stitle>PhysEd</stitle><addtitle>Phys. Educ</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>55</volume><issue>2</issue><spage>25001</spage><pages>25001-</pages><issn>0031-9120</issn><eissn>1361-6552</eissn><coden>PHEDA7</coden><abstract>The analysis, calculations and graphical charts presented here in this paper are based directly on a recently published paper by the first two of the above-named authors. In the present paper, it is clearly demonstrated that all of the following nine (or eleven including the centripetal acceleration and total mechanical energy) principal physical parameters can be calculated directly by using only the rotational period of a conical pendulum, assuming that the pendulum mass, string length and local gravitational acceleration are known precisely: string tension force, centripetal force (yielding the centripetal acceleration by simple direct calculation), orbital radius, orbital speed, apex angle, rotational moment, magnitude of the angular momentum, potential energy, kinetic energy and consequently the total mechanical energy. All of these physical parameters were calculated for a range of pendulum lengths 0.400 L 2.00 m (in nine equal interval steps of 0.200 m) and are illustrated with appropriate charts showing how these physical parameters vary as a function of the orbital period. The limiting values of the parameters as the multiple chart lines approach the horizontal and vertical exes (where this is appropriate) are explained in detail, along with any specifically interesting observations that can also be made, for example, axis intercept gradients and any points of curve inflexion (which are readily explained and calculated using calculus). For the three situations in which inflexions have been demonstrated, appropriate (and very simple) equations for the locus of points have been determined.</abstract><cop>Brecon</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6552/ab531b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4336-4237</orcidid><orcidid>https://orcid.org/0000-0002-0585-588X</orcidid><orcidid>https://orcid.org/0000-0002-3351-0395</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9120 |
ispartof | Physics education, 2020-03, Vol.55 (2), p.25001 |
issn | 0031-9120 1361-6552 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6552_ab531b |
source | Institute of Physics Journals |
subjects | Acceleration Angular momentum Apex angle Calculus Centripetal force Charts Computation Energy Kinetic energy Kinetics Laboratory Equipment Mathematical analysis Orbits Parameters Pendulums Physical properties Physics Potential energy Principals Scientific Concepts Strings |
title | Principal physical parameters of the conical pendulum calculated directly from the orbital period |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20physical%20parameters%20of%20the%20conical%20pendulum%20calculated%20directly%20from%20the%20orbital%20period&rft.jtitle=Physics%20education&rft.au=Dean,%20Kevin&rft.date=2020-03-01&rft.volume=55&rft.issue=2&rft.spage=25001&rft.pages=25001-&rft.issn=0031-9120&rft.eissn=1361-6552&rft.coden=PHEDA7&rft_id=info:doi/10.1088/1361-6552/ab531b&rft_dat=%3Cproquest_cross%3E2733148867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733148867&rft_id=info:pmid/&rft_ericid=EJ1238778&rfr_iscdi=true |