Spectrality of a class of infinite convolutions on R
Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integer...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2024-05, Vol.37 (5), p.55015 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 55015 |
container_title | Nonlinearity |
container_volume | 37 |
creator | Wu, Sha Xiao, Yingqing |
description | Given an integer
m
⩾
1
. Let
Σ
(
m
)
=
{
1
,
2
,
…
,
m
}
N
be a symbolic space, and let
{
(
b
k
,
D
k
)
}
k
=
1
m
:=
{
(
b
k
,
{
0
,
1
,
…
,
p
k
−
1
}
t
k
)
}
k
=
1
m
be a finite sequence pairs, where integers
|
b
k
|
,
p
k
⩾
2
,
|
t
k
|
⩾
1
and
p
k
,
t
1
,
t
2
,
…
,
t
m
are pairwise coprime integers for all
1
⩽
k
⩽
m
. In this paper, we show that for any infinite word
σ
=
(
σ
n
)
n
=
1
∞
∈
Σ
(
m
)
, the infinite convolution
μ
σ
=
δ
b
σ
1
−
1
D
σ
1
∗
δ
(
b
σ
1
b
σ
2
)
−
1
D
σ
2
∗
δ
(
b
σ
1
b
σ
2
b
σ
3
)
−
1
D
σ
3
∗
⋯
is a spectral measure if and only if
p
σ
n
∣
b
σ
n
for all
n
⩾
2
and
σ
∉
⋃
l
=
1
∞
∏
l
, where
∏
l
=
{
i
1
i
2
⋯
i
l
j
∞
∈
Σ
(
m
)
:
i
l
≠
j
,
|
b
j
|
=
p
j
,
|
t
j
|
≠
1
}
. |
doi_str_mv | 10.1088/1361-6544/ad3598 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ad3598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad3598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</originalsourceid><addsrcrecordid>eNp1j0tLxEAQhAdRMK7ePeYHGHc6k3kdZVFXWBB8nIfeecAsMRMyWWH_vQkRb5666Kpq-iPkFug9UKXWwARUgjfNGh3jWp2R4m91TgqqOVRSAr8kVzkfKAVQNStI8957Ow7YxvFUplBiaVvMeZaxC7GLoy9t6r5Texxj6iajK9-uyUXANvub37kin0-PH5tttXt9ftk87CpbSz5WCmvpsLYaOUWqHCpALbRoQvDApABExam1wPZ7WWMjUMhaaS8VOHROshWhy107pJwHH0w_xC8cTgaomanNjGhmRLNQT5W7pRJTbw7pOHTTg__HfwCs0le1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectrality of a class of infinite convolutions on R</title><source>Institute of Physics Journals</source><creator>Wu, Sha ; Xiao, Yingqing</creator><creatorcontrib>Wu, Sha ; Xiao, Yingqing</creatorcontrib><description>Given an integer
m
⩾
1
. Let
Σ
(
m
)
=
{
1
,
2
,
…
,
m
}
N
be a symbolic space, and let
{
(
b
k
,
D
k
)
}
k
=
1
m
:=
{
(
b
k
,
{
0
,
1
,
…
,
p
k
−
1
}
t
k
)
}
k
=
1
m
be a finite sequence pairs, where integers
|
b
k
|
,
p
k
⩾
2
,
|
t
k
|
⩾
1
and
p
k
,
t
1
,
t
2
,
…
,
t
m
are pairwise coprime integers for all
1
⩽
k
⩽
m
. In this paper, we show that for any infinite word
σ
=
(
σ
n
)
n
=
1
∞
∈
Σ
(
m
)
, the infinite convolution
μ
σ
=
δ
b
σ
1
−
1
D
σ
1
∗
δ
(
b
σ
1
b
σ
2
)
−
1
D
σ
2
∗
δ
(
b
σ
1
b
σ
2
b
σ
3
)
−
1
D
σ
3
∗
⋯
is a spectral measure if and only if
p
σ
n
∣
b
σ
n
for all
n
⩾
2
and
σ
∉
⋃
l
=
1
∞
∏
l
, where
∏
l
=
{
i
1
i
2
⋯
i
l
j
∞
∈
Σ
(
m
)
:
i
l
≠
j
,
|
b
j
|
=
p
j
,
|
t
j
|
≠
1
}
.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad3598</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>28A80; Secondary 42C05 ; 46C05 ; infinite convolutions ; Moran measures ; Primary 28A25 ; spectral measure ; translational tile</subject><ispartof>Nonlinearity, 2024-05, Vol.37 (5), p.55015</ispartof><rights>2024 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</cites><orcidid>0000-0003-3891-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad3598/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><title>Spectrality of a class of infinite convolutions on R</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>Given an integer
m
⩾
1
. Let
Σ
(
m
)
=
{
1
,
2
,
…
,
m
}
N
be a symbolic space, and let
{
(
b
k
,
D
k
)
}
k
=
1
m
:=
{
(
b
k
,
{
0
,
1
,
…
,
p
k
−
1
}
t
k
)
}
k
=
1
m
be a finite sequence pairs, where integers
|
b
k
|
,
p
k
⩾
2
,
|
t
k
|
⩾
1
and
p
k
,
t
1
,
t
2
,
…
,
t
m
are pairwise coprime integers for all
1
⩽
k
⩽
m
. In this paper, we show that for any infinite word
σ
=
(
σ
n
)
n
=
1
∞
∈
Σ
(
m
)
, the infinite convolution
μ
σ
=
δ
b
σ
1
−
1
D
σ
1
∗
δ
(
b
σ
1
b
σ
2
)
−
1
D
σ
2
∗
δ
(
b
σ
1
b
σ
2
b
σ
3
)
−
1
D
σ
3
∗
⋯
is a spectral measure if and only if
p
σ
n
∣
b
σ
n
for all
n
⩾
2
and
σ
∉
⋃
l
=
1
∞
∏
l
, where
∏
l
=
{
i
1
i
2
⋯
i
l
j
∞
∈
Σ
(
m
)
:
i
l
≠
j
,
|
b
j
|
=
p
j
,
|
t
j
|
≠
1
}
.</description><subject>28A80; Secondary 42C05</subject><subject>46C05</subject><subject>infinite convolutions</subject><subject>Moran measures</subject><subject>Primary 28A25</subject><subject>spectral measure</subject><subject>translational tile</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxEAQhAdRMK7ePeYHGHc6k3kdZVFXWBB8nIfeecAsMRMyWWH_vQkRb5666Kpq-iPkFug9UKXWwARUgjfNGh3jWp2R4m91TgqqOVRSAr8kVzkfKAVQNStI8957Ow7YxvFUplBiaVvMeZaxC7GLoy9t6r5Texxj6iajK9-uyUXANvub37kin0-PH5tttXt9ftk87CpbSz5WCmvpsLYaOUWqHCpALbRoQvDApABExam1wPZ7WWMjUMhaaS8VOHROshWhy107pJwHH0w_xC8cTgaomanNjGhmRLNQT5W7pRJTbw7pOHTTg__HfwCs0le1</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wu, Sha</creator><creator>Xiao, Yingqing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3891-9920</orcidid></search><sort><creationdate>20240501</creationdate><title>Spectrality of a class of infinite convolutions on R</title><author>Wu, Sha ; Xiao, Yingqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>28A80; Secondary 42C05</topic><topic>46C05</topic><topic>infinite convolutions</topic><topic>Moran measures</topic><topic>Primary 28A25</topic><topic>spectral measure</topic><topic>translational tile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Sha</au><au>Xiao, Yingqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrality of a class of infinite convolutions on R</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>37</volume><issue>5</issue><spage>55015</spage><pages>55015-</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>Given an integer
m
⩾
1
. Let
Σ
(
m
)
=
{
1
,
2
,
…
,
m
}
N
be a symbolic space, and let
{
(
b
k
,
D
k
)
}
k
=
1
m
:=
{
(
b
k
,
{
0
,
1
,
…
,
p
k
−
1
}
t
k
)
}
k
=
1
m
be a finite sequence pairs, where integers
|
b
k
|
,
p
k
⩾
2
,
|
t
k
|
⩾
1
and
p
k
,
t
1
,
t
2
,
…
,
t
m
are pairwise coprime integers for all
1
⩽
k
⩽
m
. In this paper, we show that for any infinite word
σ
=
(
σ
n
)
n
=
1
∞
∈
Σ
(
m
)
, the infinite convolution
μ
σ
=
δ
b
σ
1
−
1
D
σ
1
∗
δ
(
b
σ
1
b
σ
2
)
−
1
D
σ
2
∗
δ
(
b
σ
1
b
σ
2
b
σ
3
)
−
1
D
σ
3
∗
⋯
is a spectral measure if and only if
p
σ
n
∣
b
σ
n
for all
n
⩾
2
and
σ
∉
⋃
l
=
1
∞
∏
l
, where
∏
l
=
{
i
1
i
2
⋯
i
l
j
∞
∈
Σ
(
m
)
:
i
l
≠
j
,
|
b
j
|
=
p
j
,
|
t
j
|
≠
1
}
.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad3598</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3891-9920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2024-05, Vol.37 (5), p.55015 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ad3598 |
source | Institute of Physics Journals |
subjects | 28A80 Secondary 42C05 46C05 infinite convolutions Moran measures Primary 28A25 spectral measure translational tile |
title | Spectrality of a class of infinite convolutions on R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrality%20of%20a%20class%20of%20infinite%20convolutions%20on%20R&rft.jtitle=Nonlinearity&rft.au=Wu,%20Sha&rft.date=2024-05-01&rft.volume=37&rft.issue=5&rft.spage=55015&rft.pages=55015-&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad3598&rft_dat=%3Ciop_cross%3Enonad3598%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |