Spectrality of a class of infinite convolutions on R

Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2024-05, Vol.37 (5), p.55015
Hauptverfasser: Wu, Sha, Xiao, Yingqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 55015
container_title Nonlinearity
container_volume 37
creator Wu, Sha
Xiao, Yingqing
description Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integers for all 1 ⩽ k ⩽ m . In this paper, we show that for any infinite word σ = ( σ n ) n = 1 ∞ ∈ Σ ( m ) , the infinite convolution μ σ = δ b σ 1 − 1 D σ 1 ∗ δ ( b σ 1 b σ 2 ) − 1 D σ 2 ∗ δ ( b σ 1 b σ 2 b σ 3 ) − 1 D σ 3 ∗ ⋯ is a spectral measure if and only if p σ n ∣ b σ n for all n ⩾ 2 and σ ∉ ⋃ l = 1 ∞ ∏ l , where ∏ l = { i 1 i 2 ⋯ i l j ∞ ∈ Σ ( m ) : i l ≠ j , | b j | = p j , | t j | ≠ 1 } .
doi_str_mv 10.1088/1361-6544/ad3598
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ad3598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad3598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</originalsourceid><addsrcrecordid>eNp1j0tLxEAQhAdRMK7ePeYHGHc6k3kdZVFXWBB8nIfeecAsMRMyWWH_vQkRb5666Kpq-iPkFug9UKXWwARUgjfNGh3jWp2R4m91TgqqOVRSAr8kVzkfKAVQNStI8957Ow7YxvFUplBiaVvMeZaxC7GLoy9t6r5Texxj6iajK9-uyUXANvub37kin0-PH5tttXt9ftk87CpbSz5WCmvpsLYaOUWqHCpALbRoQvDApABExam1wPZ7WWMjUMhaaS8VOHROshWhy107pJwHH0w_xC8cTgaomanNjGhmRLNQT5W7pRJTbw7pOHTTg__HfwCs0le1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectrality of a class of infinite convolutions on R</title><source>Institute of Physics Journals</source><creator>Wu, Sha ; Xiao, Yingqing</creator><creatorcontrib>Wu, Sha ; Xiao, Yingqing</creatorcontrib><description>Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integers for all 1 ⩽ k ⩽ m . In this paper, we show that for any infinite word σ = ( σ n ) n = 1 ∞ ∈ Σ ( m ) , the infinite convolution μ σ = δ b σ 1 − 1 D σ 1 ∗ δ ( b σ 1 b σ 2 ) − 1 D σ 2 ∗ δ ( b σ 1 b σ 2 b σ 3 ) − 1 D σ 3 ∗ ⋯ is a spectral measure if and only if p σ n ∣ b σ n for all n ⩾ 2 and σ ∉ ⋃ l = 1 ∞ ∏ l , where ∏ l = { i 1 i 2 ⋯ i l j ∞ ∈ Σ ( m ) : i l ≠ j , | b j | = p j , | t j | ≠ 1 } .</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad3598</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>28A80; Secondary 42C05 ; 46C05 ; infinite convolutions ; Moran measures ; Primary 28A25 ; spectral measure ; translational tile</subject><ispartof>Nonlinearity, 2024-05, Vol.37 (5), p.55015</ispartof><rights>2024 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</cites><orcidid>0000-0003-3891-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad3598/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><title>Spectrality of a class of infinite convolutions on R</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integers for all 1 ⩽ k ⩽ m . In this paper, we show that for any infinite word σ = ( σ n ) n = 1 ∞ ∈ Σ ( m ) , the infinite convolution μ σ = δ b σ 1 − 1 D σ 1 ∗ δ ( b σ 1 b σ 2 ) − 1 D σ 2 ∗ δ ( b σ 1 b σ 2 b σ 3 ) − 1 D σ 3 ∗ ⋯ is a spectral measure if and only if p σ n ∣ b σ n for all n ⩾ 2 and σ ∉ ⋃ l = 1 ∞ ∏ l , where ∏ l = { i 1 i 2 ⋯ i l j ∞ ∈ Σ ( m ) : i l ≠ j , | b j | = p j , | t j | ≠ 1 } .</description><subject>28A80; Secondary 42C05</subject><subject>46C05</subject><subject>infinite convolutions</subject><subject>Moran measures</subject><subject>Primary 28A25</subject><subject>spectral measure</subject><subject>translational tile</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxEAQhAdRMK7ePeYHGHc6k3kdZVFXWBB8nIfeecAsMRMyWWH_vQkRb5666Kpq-iPkFug9UKXWwARUgjfNGh3jWp2R4m91TgqqOVRSAr8kVzkfKAVQNStI8957Ow7YxvFUplBiaVvMeZaxC7GLoy9t6r5Texxj6iajK9-uyUXANvub37kin0-PH5tttXt9ftk87CpbSz5WCmvpsLYaOUWqHCpALbRoQvDApABExam1wPZ7WWMjUMhaaS8VOHROshWhy107pJwHH0w_xC8cTgaomanNjGhmRLNQT5W7pRJTbw7pOHTTg__HfwCs0le1</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wu, Sha</creator><creator>Xiao, Yingqing</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3891-9920</orcidid></search><sort><creationdate>20240501</creationdate><title>Spectrality of a class of infinite convolutions on R</title><author>Wu, Sha ; Xiao, Yingqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-8a27da2c9a50a08da81a96964ffe13761aa850cc13bb72a46a67289e781dadd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>28A80; Secondary 42C05</topic><topic>46C05</topic><topic>infinite convolutions</topic><topic>Moran measures</topic><topic>Primary 28A25</topic><topic>spectral measure</topic><topic>translational tile</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Xiao, Yingqing</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Sha</au><au>Xiao, Yingqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrality of a class of infinite convolutions on R</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>37</volume><issue>5</issue><spage>55015</spage><pages>55015-</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>Given an integer m ⩾ 1 . Let Σ ( m ) = { 1 , 2 , … , m } N be a symbolic space, and let { ( b k , D k ) } k = 1 m := { ( b k , { 0 , 1 , … , p k − 1 } t k ) } k = 1 m be a finite sequence pairs, where integers | b k | , p k ⩾ 2 , | t k | ⩾ 1 and p k , t 1 , t 2 , … , t m are pairwise coprime integers for all 1 ⩽ k ⩽ m . In this paper, we show that for any infinite word σ = ( σ n ) n = 1 ∞ ∈ Σ ( m ) , the infinite convolution μ σ = δ b σ 1 − 1 D σ 1 ∗ δ ( b σ 1 b σ 2 ) − 1 D σ 2 ∗ δ ( b σ 1 b σ 2 b σ 3 ) − 1 D σ 3 ∗ ⋯ is a spectral measure if and only if p σ n ∣ b σ n for all n ⩾ 2 and σ ∉ ⋃ l = 1 ∞ ∏ l , where ∏ l = { i 1 i 2 ⋯ i l j ∞ ∈ Σ ( m ) : i l ≠ j , | b j | = p j , | t j | ≠ 1 } .</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad3598</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3891-9920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2024-05, Vol.37 (5), p.55015
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ad3598
source Institute of Physics Journals
subjects 28A80
Secondary 42C05
46C05
infinite convolutions
Moran measures
Primary 28A25
spectral measure
translational tile
title Spectrality of a class of infinite convolutions on R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrality%20of%20a%20class%20of%20infinite%20convolutions%20on%20R&rft.jtitle=Nonlinearity&rft.au=Wu,%20Sha&rft.date=2024-05-01&rft.volume=37&rft.issue=5&rft.spage=55015&rft.pages=55015-&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad3598&rft_dat=%3Ciop_cross%3Enonad3598%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true