Finite switching near heteroclinic networks
We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermo...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2023-12, Vol.36 (12), p.6239-6259 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6259 |
---|---|
container_issue | 12 |
container_start_page | 6239 |
container_title | Nonlinearity |
container_volume | 36 |
creator | Castro, S B S D Garrido-da-Silva, L |
description | We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex. |
doi_str_mv | 10.1088/1361-6544/ad03cf |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ad03cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad03cf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqGwM2aHUJ_txPaIKgpIlVja2XKuF-pSksoOqvj3JApiYzrp3XtP72PsFvgDcGPmICsoqlKpud9yic0Zy_6kc5ZxW0KhNZSX7CqlPecARsiM3S1DG3rK0yn0uAvte96Sj_mOeoodHoYnDkp_6uJHumYXjT8kuvm9M7ZZPq0XL8Xq7fl18bgqUArRF0YoUkjIjRe1tmCgNDUnNGgVWFsbLSttakGCV6ZCqaTaelBoLVltvZYzxqdejF1KkRp3jOHTx28H3I2wbiRzI5mbYIfI_RQJ3dHtu6_YDgP_t_8Aea9VAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite switching near heteroclinic networks</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Castro, S B S D ; Garrido-da-Silva, L</creator><creatorcontrib>Castro, S B S D ; Garrido-da-Silva, L</creatorcontrib><description>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad03cf</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>34C37 ; 37C29 ; 37D99 ; 91A22 ; heteroclinic cycle ; heteroclinic network ; switching</subject><ispartof>Nonlinearity, 2023-12, Vol.36 (12), p.6239-6259</ispartof><rights>2023 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</citedby><cites>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</cites><orcidid>0000-0001-9029-6893 ; 0000-0003-4294-3931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad03cf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Castro, S B S D</creatorcontrib><creatorcontrib>Garrido-da-Silva, L</creatorcontrib><title>Finite switching near heteroclinic networks</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</description><subject>34C37</subject><subject>37C29</subject><subject>37D99</subject><subject>91A22</subject><subject>heteroclinic cycle</subject><subject>heteroclinic network</subject><subject>switching</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqGwM2aHUJ_txPaIKgpIlVja2XKuF-pSksoOqvj3JApiYzrp3XtP72PsFvgDcGPmICsoqlKpud9yic0Zy_6kc5ZxW0KhNZSX7CqlPecARsiM3S1DG3rK0yn0uAvte96Sj_mOeoodHoYnDkp_6uJHumYXjT8kuvm9M7ZZPq0XL8Xq7fl18bgqUArRF0YoUkjIjRe1tmCgNDUnNGgVWFsbLSttakGCV6ZCqaTaelBoLVltvZYzxqdejF1KkRp3jOHTx28H3I2wbiRzI5mbYIfI_RQJ3dHtu6_YDgP_t_8Aea9VAg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Castro, S B S D</creator><creator>Garrido-da-Silva, L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9029-6893</orcidid><orcidid>https://orcid.org/0000-0003-4294-3931</orcidid></search><sort><creationdate>20231201</creationdate><title>Finite switching near heteroclinic networks</title><author>Castro, S B S D ; Garrido-da-Silva, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>34C37</topic><topic>37C29</topic><topic>37D99</topic><topic>91A22</topic><topic>heteroclinic cycle</topic><topic>heteroclinic network</topic><topic>switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, S B S D</creatorcontrib><creatorcontrib>Garrido-da-Silva, L</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, S B S D</au><au>Garrido-da-Silva, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite switching near heteroclinic networks</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>36</volume><issue>12</issue><spage>6239</spage><epage>6259</epage><pages>6239-6259</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad03cf</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9029-6893</orcidid><orcidid>https://orcid.org/0000-0003-4294-3931</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2023-12, Vol.36 (12), p.6239-6259 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ad03cf |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 34C37 37C29 37D99 91A22 heteroclinic cycle heteroclinic network switching |
title | Finite switching near heteroclinic networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20switching%20near%20heteroclinic%20networks&rft.jtitle=Nonlinearity&rft.au=Castro,%20S%20B%20S%20D&rft.date=2023-12-01&rft.volume=36&rft.issue=12&rft.spage=6239&rft.epage=6259&rft.pages=6239-6259&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad03cf&rft_dat=%3Ciop_cross%3Enonad03cf%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |