Finite switching near heteroclinic networks

We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-12, Vol.36 (12), p.6239-6259
Hauptverfasser: Castro, S B S D, Garrido-da-Silva, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6259
container_issue 12
container_start_page 6239
container_title Nonlinearity
container_volume 36
creator Castro, S B S D
Garrido-da-Silva, L
description We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.
doi_str_mv 10.1088/1361-6544/ad03cf
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ad03cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonad03cf</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqGwM2aHUJ_txPaIKgpIlVja2XKuF-pSksoOqvj3JApiYzrp3XtP72PsFvgDcGPmICsoqlKpud9yic0Zy_6kc5ZxW0KhNZSX7CqlPecARsiM3S1DG3rK0yn0uAvte96Sj_mOeoodHoYnDkp_6uJHumYXjT8kuvm9M7ZZPq0XL8Xq7fl18bgqUArRF0YoUkjIjRe1tmCgNDUnNGgVWFsbLSttakGCV6ZCqaTaelBoLVltvZYzxqdejF1KkRp3jOHTx28H3I2wbiRzI5mbYIfI_RQJ3dHtu6_YDgP_t_8Aea9VAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite switching near heteroclinic networks</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Castro, S B S D ; Garrido-da-Silva, L</creator><creatorcontrib>Castro, S B S D ; Garrido-da-Silva, L</creatorcontrib><description>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ad03cf</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>34C37 ; 37C29 ; 37D99 ; 91A22 ; heteroclinic cycle ; heteroclinic network ; switching</subject><ispartof>Nonlinearity, 2023-12, Vol.36 (12), p.6239-6259</ispartof><rights>2023 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</citedby><cites>FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</cites><orcidid>0000-0001-9029-6893 ; 0000-0003-4294-3931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ad03cf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Castro, S B S D</creatorcontrib><creatorcontrib>Garrido-da-Silva, L</creatorcontrib><title>Finite switching near heteroclinic networks</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</description><subject>34C37</subject><subject>37C29</subject><subject>37D99</subject><subject>91A22</subject><subject>heteroclinic cycle</subject><subject>heteroclinic network</subject><subject>switching</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqGwM2aHUJ_txPaIKgpIlVja2XKuF-pSksoOqvj3JApiYzrp3XtP72PsFvgDcGPmICsoqlKpud9yic0Zy_6kc5ZxW0KhNZSX7CqlPecARsiM3S1DG3rK0yn0uAvte96Sj_mOeoodHoYnDkp_6uJHumYXjT8kuvm9M7ZZPq0XL8Xq7fl18bgqUArRF0YoUkjIjRe1tmCgNDUnNGgVWFsbLSttakGCV6ZCqaTaelBoLVltvZYzxqdejF1KkRp3jOHTx28H3I2wbiRzI5mbYIfI_RQJ3dHtu6_YDgP_t_8Aea9VAg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Castro, S B S D</creator><creator>Garrido-da-Silva, L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9029-6893</orcidid><orcidid>https://orcid.org/0000-0003-4294-3931</orcidid></search><sort><creationdate>20231201</creationdate><title>Finite switching near heteroclinic networks</title><author>Castro, S B S D ; Garrido-da-Silva, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-824e4cec08a2b7918158b0ec8c94199b873678b2e20686c3434da14c99e979a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>34C37</topic><topic>37C29</topic><topic>37D99</topic><topic>91A22</topic><topic>heteroclinic cycle</topic><topic>heteroclinic network</topic><topic>switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, S B S D</creatorcontrib><creatorcontrib>Garrido-da-Silva, L</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, S B S D</au><au>Garrido-da-Silva, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite switching near heteroclinic networks</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>36</volume><issue>12</issue><spage>6239</spage><epage>6259</epage><pages>6239-6259</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We address the level of complexity that can be observed in the dynamics near a robust heteroclinic network. We show that infinite switching, which is a path towards chaos, does not exist near a heteroclinic network such that the eigenvalues of the Jacobian matrix at each node are all real. Furthermore, for a path starting at a node that belongs to more than one heteroclinic cycle, we find a bound for the number of such nodes that can exist in any such path. This constricted dynamics is in stark contrast with examples in the literature of heteroclinic networks such that the eigenvalues of the Jacobian matrix at one node are complex.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ad03cf</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9029-6893</orcidid><orcidid>https://orcid.org/0000-0003-4294-3931</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2023-12, Vol.36 (12), p.6239-6259
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ad03cf
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 34C37
37C29
37D99
91A22
heteroclinic cycle
heteroclinic network
switching
title Finite switching near heteroclinic networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20switching%20near%20heteroclinic%20networks&rft.jtitle=Nonlinearity&rft.au=Castro,%20S%20B%20S%20D&rft.date=2023-12-01&rft.volume=36&rft.issue=12&rft.spage=6239&rft.epage=6259&rft.pages=6239-6259&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ad03cf&rft_dat=%3Ciop_cross%3Enonad03cf%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true