Time periodic solutions to Hibler’s sea ice model

It is shown that the viscous-plastic Hibler sea ice model admits a unique, strong T -time periodic solution provided the given T -periodic forcing functions are small in suitable norms. This is in particular true for time periodic wind forces and time periodic ice growth rates.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-06, Vol.36 (6), p.3109-3124
Hauptverfasser: Brandt, Felix, Hieber, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3124
container_issue 6
container_start_page 3109
container_title Nonlinearity
container_volume 36
creator Brandt, Felix
Hieber, Matthias
description It is shown that the viscous-plastic Hibler sea ice model admits a unique, strong T -time periodic solution provided the given T -periodic forcing functions are small in suitable norms. This is in particular true for time periodic wind forces and time periodic ice growth rates.
doi_str_mv 10.1088/1361-6544/accfde
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_accfde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaccfde</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-d449a5604418052bbaf25272ca59555b7a83295c01585f39fdc49cca6240c9ff3</originalsourceid><addsrcrecordid>eNp9j79OwzAYxC0EEqWwM3phI_Tzny-JR1RBi1SJpcyW49iSqySO7HZg4zV4PZ6EVkFMiOmk093pfoTcMnhgUNcLJkpWlCjlwljrW3dGZr_WOZmBQlZUFcNLcpXzDoCxmosZEdvQOzq6FGIbLM2xO-xDHDLdR7oOTefS18dnptkZGqyjfWxdd00uvOmyu_nROXl7ftou18XmdfWyfNwUVgDui1ZKZbAEKVkNyJvGeI684tagQsSmMrXgCi0wrNEL5VsrlbWm5BKs8l7MCUy7NsWck_N6TKE36V0z0CdofSLUJ0I9QR8r91MlxFHv4iENx4P_xe_-iA9x0KLUpRYMlB5bL74Bas1mWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time periodic solutions to Hibler’s sea ice model</title><source>Institute of Physics Journals</source><creator>Brandt, Felix ; Hieber, Matthias</creator><creatorcontrib>Brandt, Felix ; Hieber, Matthias</creatorcontrib><description>It is shown that the viscous-plastic Hibler sea ice model admits a unique, strong T -time periodic solution provided the given T -periodic forcing functions are small in suitable norms. This is in particular true for time periodic wind forces and time periodic ice growth rates.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/accfde</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>35Q86, 35K59, 35B10, 86A05, 86A10 ; Hibler’s sea ice model ; periodic ice growth rate ; periodic solutions ; periodic wind forces</subject><ispartof>Nonlinearity, 2023-06, Vol.36 (6), p.3109-3124</ispartof><rights>2023 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-d449a5604418052bbaf25272ca59555b7a83295c01585f39fdc49cca6240c9ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/accfde/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Brandt, Felix</creatorcontrib><creatorcontrib>Hieber, Matthias</creatorcontrib><title>Time periodic solutions to Hibler’s sea ice model</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>It is shown that the viscous-plastic Hibler sea ice model admits a unique, strong T -time periodic solution provided the given T -periodic forcing functions are small in suitable norms. This is in particular true for time periodic wind forces and time periodic ice growth rates.</description><subject>35Q86, 35K59, 35B10, 86A05, 86A10</subject><subject>Hibler’s sea ice model</subject><subject>periodic ice growth rate</subject><subject>periodic solutions</subject><subject>periodic wind forces</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9j79OwzAYxC0EEqWwM3phI_Tzny-JR1RBi1SJpcyW49iSqySO7HZg4zV4PZ6EVkFMiOmk093pfoTcMnhgUNcLJkpWlCjlwljrW3dGZr_WOZmBQlZUFcNLcpXzDoCxmosZEdvQOzq6FGIbLM2xO-xDHDLdR7oOTefS18dnptkZGqyjfWxdd00uvOmyu_nROXl7ftou18XmdfWyfNwUVgDui1ZKZbAEKVkNyJvGeI684tagQsSmMrXgCi0wrNEL5VsrlbWm5BKs8l7MCUy7NsWck_N6TKE36V0z0CdofSLUJ0I9QR8r91MlxFHv4iENx4P_xe_-iA9x0KLUpRYMlB5bL74Bas1mWg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Brandt, Felix</creator><creator>Hieber, Matthias</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Time periodic solutions to Hibler’s sea ice model</title><author>Brandt, Felix ; Hieber, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-d449a5604418052bbaf25272ca59555b7a83295c01585f39fdc49cca6240c9ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>35Q86, 35K59, 35B10, 86A05, 86A10</topic><topic>Hibler’s sea ice model</topic><topic>periodic ice growth rate</topic><topic>periodic solutions</topic><topic>periodic wind forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandt, Felix</creatorcontrib><creatorcontrib>Hieber, Matthias</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandt, Felix</au><au>Hieber, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time periodic solutions to Hibler’s sea ice model</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>36</volume><issue>6</issue><spage>3109</spage><epage>3124</epage><pages>3109-3124</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>It is shown that the viscous-plastic Hibler sea ice model admits a unique, strong T -time periodic solution provided the given T -periodic forcing functions are small in suitable norms. This is in particular true for time periodic wind forces and time periodic ice growth rates.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/accfde</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2023-06, Vol.36 (6), p.3109-3124
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_accfde
source Institute of Physics Journals
subjects 35Q86, 35K59, 35B10, 86A05, 86A10
Hibler’s sea ice model
periodic ice growth rate
periodic solutions
periodic wind forces
title Time periodic solutions to Hibler’s sea ice model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20periodic%20solutions%20to%20Hibler%E2%80%99s%20sea%20ice%20model&rft.jtitle=Nonlinearity&rft.au=Brandt,%20Felix&rft.date=2023-06-01&rft.volume=36&rft.issue=6&rft.spage=3109&rft.epage=3124&rft.pages=3109-3124&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/accfde&rft_dat=%3Ciop_cross%3Enonaccfde%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true