Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn

In this paper, we consider the following nonlinear wave equation u t t − Δ u + a ( t , x ) | u t | m − 1 u t + | u | p − 1 u = 0 , t > 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n and obtain optimal energy decay estimates under suitable assumptions on the space-time non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2023-03, Vol.36 (3), p.1989-2000
Hauptverfasser: Ogbiyele, Paul A, Arawomo, Peter O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000
container_issue 3
container_start_page 1989
container_title Nonlinearity
container_volume 36
creator Ogbiyele, Paul A
Arawomo, Peter O
description In this paper, we consider the following nonlinear wave equation u t t − Δ u + a ( t , x ) | u t | m − 1 u t + | u | p − 1 u = 0 , t > 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n and obtain optimal energy decay estimates under suitable assumptions on the space-time nonlinear damping coefficient a , where m satisfies 1 < m ⩽ n + 2 n − 2 . We establish a new Liapunov type function to obtain energy decay estimates in the case of nonlinear damping instead of the Kormonik lemma.
doi_str_mv 10.1088/1361-6544/acb7c3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_acb7c3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonacb7c3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-7f241740ebbce546389740d9eb6fc60459f1a65c4ef851c7e02e0ecfa64ea6623</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKt3j3kA1ya7SXb3KKVaoSCI4jHMZic1pZusydbSt7dLxZunn_mZbxg-Qm45u-esqma8UDxTUogZmKY0xRmZ_FXnZMJqybOy5PKSXKW0YYzzKi8m5GPhMa4PtEUDB2pDpHv4RopfOxhc8Inu3fBJffBb5xEibaHrnV9T8C1NPRjMBtchNQGtdcahH6jz9NVfkwsL24Q3vzkl74-Lt_kyW708Pc8fVpnJORuy0uaCl4Jh0xiUQhVVfZzaGhtljWJC1paDkkagrSQ3JbIcGRoLSiAolRdTwk53TQwpRbS6j66DeNCc6VGMHi3o0YI-iTkidyfEhV5vwi7644P_r_8AsLBlwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ogbiyele, Paul A ; Arawomo, Peter O</creator><creatorcontrib>Ogbiyele, Paul A ; Arawomo, Peter O</creatorcontrib><description>In this paper, we consider the following nonlinear wave equation u t t − Δ u + a ( t , x ) | u t | m − 1 u t + | u | p − 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n and obtain optimal energy decay estimates under suitable assumptions on the space-time nonlinear damping coefficient a , where m satisfies 1 &lt; m ⩽ n + 2 n − 2 . We establish a new Liapunov type function to obtain energy decay estimates in the case of nonlinear damping instead of the Kormonik lemma.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/acb7c3</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>35B40 ; 35L05 ; 93D15 ; damping potential ; energy decay ; wave equation</subject><ispartof>Nonlinearity, 2023-03, Vol.36 (3), p.1989-2000</ispartof><rights>2023 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c210t-7f241740ebbce546389740d9eb6fc60459f1a65c4ef851c7e02e0ecfa64ea6623</citedby><cites>FETCH-LOGICAL-c210t-7f241740ebbce546389740d9eb6fc60459f1a65c4ef851c7e02e0ecfa64ea6623</cites><orcidid>0000-0003-1612-0069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/acb7c3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Ogbiyele, Paul A</creatorcontrib><creatorcontrib>Arawomo, Peter O</creatorcontrib><title>Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper, we consider the following nonlinear wave equation u t t − Δ u + a ( t , x ) | u t | m − 1 u t + | u | p − 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n and obtain optimal energy decay estimates under suitable assumptions on the space-time nonlinear damping coefficient a , where m satisfies 1 &lt; m ⩽ n + 2 n − 2 . We establish a new Liapunov type function to obtain energy decay estimates in the case of nonlinear damping instead of the Kormonik lemma.</description><subject>35B40</subject><subject>35L05</subject><subject>93D15</subject><subject>damping potential</subject><subject>energy decay</subject><subject>wave equation</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKt3j3kA1ya7SXb3KKVaoSCI4jHMZic1pZusydbSt7dLxZunn_mZbxg-Qm45u-esqma8UDxTUogZmKY0xRmZ_FXnZMJqybOy5PKSXKW0YYzzKi8m5GPhMa4PtEUDB2pDpHv4RopfOxhc8Inu3fBJffBb5xEibaHrnV9T8C1NPRjMBtchNQGtdcahH6jz9NVfkwsL24Q3vzkl74-Lt_kyW708Pc8fVpnJORuy0uaCl4Jh0xiUQhVVfZzaGhtljWJC1paDkkagrSQ3JbIcGRoLSiAolRdTwk53TQwpRbS6j66DeNCc6VGMHi3o0YI-iTkidyfEhV5vwi7644P_r_8AsLBlwQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ogbiyele, Paul A</creator><creator>Arawomo, Peter O</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1612-0069</orcidid></search><sort><creationdate>20230301</creationdate><title>Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn</title><author>Ogbiyele, Paul A ; Arawomo, Peter O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-7f241740ebbce546389740d9eb6fc60459f1a65c4ef851c7e02e0ecfa64ea6623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>35B40</topic><topic>35L05</topic><topic>93D15</topic><topic>damping potential</topic><topic>energy decay</topic><topic>wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogbiyele, Paul A</creatorcontrib><creatorcontrib>Arawomo, Peter O</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogbiyele, Paul A</au><au>Arawomo, Peter O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>36</volume><issue>3</issue><spage>1989</spage><epage>2000</epage><pages>1989-2000</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper, we consider the following nonlinear wave equation u t t − Δ u + a ( t , x ) | u t | m − 1 u t + | u | p − 1 u = 0 , t &gt; 0 , x ∈ R n u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) x ∈ R n and obtain optimal energy decay estimates under suitable assumptions on the space-time nonlinear damping coefficient a , where m satisfies 1 &lt; m ⩽ n + 2 n − 2 . We establish a new Liapunov type function to obtain energy decay estimates in the case of nonlinear damping instead of the Kormonik lemma.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/acb7c3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1612-0069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2023-03, Vol.36 (3), p.1989-2000
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_acb7c3
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 35B40
35L05
93D15
damping potential
energy decay
wave equation
title Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20decay%20for%20wave%20equations%20with%20nonlinear%20damping%20and%20space-time%20coefficient%20in%20Rn&rft.jtitle=Nonlinearity&rft.au=Ogbiyele,%20Paul%20A&rft.date=2023-03-01&rft.volume=36&rft.issue=3&rft.spage=1989&rft.epage=2000&rft.pages=1989-2000&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/acb7c3&rft_dat=%3Ciop_cross%3Enonacb7c3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true