Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws

The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-03, Vol.35 (3), p.1286-1310
Hauptverfasser: Chandramouli, Sathyanarayanan, Farhat, Aseel, H Musslimani, Ziad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 3
container_start_page 1286
container_title Nonlinearity
container_volume 35
creator Chandramouli, Sathyanarayanan
Farhat, Aseel
H Musslimani, Ziad
description The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.
doi_str_mv 10.1088/1361-6544/ac4815
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac4815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac4815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3j7l4sy6_2xxlOhUGXuZRQtokLKNNStI69K93o-JJPH18H8_78fIAcI3RHUZVtcBU4EJwxha6YRXmJ2D2ezoFMyQ5LsoS83NwkfMOIYwrQmfgfeM7Wxjb22BsGODDuNWdbWGyIaZOt_5LDz4G2NlhGw3c-2ELu7EdfN9a2MSQbfqYCB0MND5n3097q_f5Epw53WZ79TPn4G31uFk-F-vXp5fl_bpoKEZDQWjJqEWksqWuGZKEaieaQ0MkEEdMS2EIrWvDSkmIrJ0wzslGMsypriU3dA7Q9LdJMedkneqT73T6VBipox51dKGOLtSk5xC5nSI-9moXxxQOBf_Db_7AQwyKckUVJpVQvXH0GxRddHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</creator><creatorcontrib>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</creatorcontrib><description>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac4815</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Duhamel’s principle ; Hamiltonian and dissipative systems ; initial boundary value problems ; nonlinear waves ; partial differential equations ; renormalization method ; soliton equations</subject><ispartof>Nonlinearity, 2022-03, Vol.35 (3), p.1286-1310</ispartof><rights>2022 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</citedby><cites>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</cites><orcidid>0000-0002-8535-7126 ; 0000-0002-5846-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac4815/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Chandramouli, Sathyanarayanan</creatorcontrib><creatorcontrib>Farhat, Aseel</creatorcontrib><creatorcontrib>H Musslimani, Ziad</creatorcontrib><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</description><subject>Duhamel’s principle</subject><subject>Hamiltonian and dissipative systems</subject><subject>initial boundary value problems</subject><subject>nonlinear waves</subject><subject>partial differential equations</subject><subject>renormalization method</subject><subject>soliton equations</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3j7l4sy6_2xxlOhUGXuZRQtokLKNNStI69K93o-JJPH18H8_78fIAcI3RHUZVtcBU4EJwxha6YRXmJ2D2ezoFMyQ5LsoS83NwkfMOIYwrQmfgfeM7Wxjb22BsGODDuNWdbWGyIaZOt_5LDz4G2NlhGw3c-2ELu7EdfN9a2MSQbfqYCB0MND5n3097q_f5Epw53WZ79TPn4G31uFk-F-vXp5fl_bpoKEZDQWjJqEWksqWuGZKEaieaQ0MkEEdMS2EIrWvDSkmIrJ0wzslGMsypriU3dA7Q9LdJMedkneqT73T6VBipox51dKGOLtSk5xC5nSI-9moXxxQOBf_Db_7AQwyKckUVJpVQvXH0GxRddHA</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Chandramouli, Sathyanarayanan</creator><creator>Farhat, Aseel</creator><creator>H Musslimani, Ziad</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8535-7126</orcidid><orcidid>https://orcid.org/0000-0002-5846-1219</orcidid></search><sort><creationdate>20220303</creationdate><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><author>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Duhamel’s principle</topic><topic>Hamiltonian and dissipative systems</topic><topic>initial boundary value problems</topic><topic>nonlinear waves</topic><topic>partial differential equations</topic><topic>renormalization method</topic><topic>soliton equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandramouli, Sathyanarayanan</creatorcontrib><creatorcontrib>Farhat, Aseel</creatorcontrib><creatorcontrib>H Musslimani, Ziad</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandramouli, Sathyanarayanan</au><au>Farhat, Aseel</au><au>H Musslimani, Ziad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1286</spage><epage>1310</epage><pages>1286-1310</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac4815</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8535-7126</orcidid><orcidid>https://orcid.org/0000-0002-5846-1219</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-03, Vol.35 (3), p.1286-1310
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ac4815
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Duhamel’s principle
Hamiltonian and dissipative systems
initial boundary value problems
nonlinear waves
partial differential equations
renormalization method
soliton equations
title Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20Duhamel%20renormalization%20method%20with%20multiple%20conservation%20and%20dissipation%20laws&rft.jtitle=Nonlinearity&rft.au=Chandramouli,%20Sathyanarayanan&rft.date=2022-03-03&rft.volume=35&rft.issue=3&rft.spage=1286&rft.epage=1310&rft.pages=1286-1310&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac4815&rft_dat=%3Ciop_cross%3Enonac4815%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true