Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws
The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2022-03, Vol.35 (3), p.1286-1310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 3 |
container_start_page | 1286 |
container_title | Nonlinearity |
container_volume | 35 |
creator | Chandramouli, Sathyanarayanan Farhat, Aseel H Musslimani, Ziad |
description | The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations. |
doi_str_mv | 10.1088/1361-6544/ac4815 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac4815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac4815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd3j7l4sy6_2xxlOhUGXuZRQtokLKNNStI69K93o-JJPH18H8_78fIAcI3RHUZVtcBU4EJwxha6YRXmJ2D2ezoFMyQ5LsoS83NwkfMOIYwrQmfgfeM7Wxjb22BsGODDuNWdbWGyIaZOt_5LDz4G2NlhGw3c-2ELu7EdfN9a2MSQbfqYCB0MND5n3097q_f5Epw53WZ79TPn4G31uFk-F-vXp5fl_bpoKEZDQWjJqEWksqWuGZKEaieaQ0MkEEdMS2EIrWvDSkmIrJ0wzslGMsypriU3dA7Q9LdJMedkneqT73T6VBipox51dKGOLtSk5xC5nSI-9moXxxQOBf_Db_7AQwyKckUVJpVQvXH0GxRddHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</creator><creatorcontrib>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</creatorcontrib><description>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac4815</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Duhamel’s principle ; Hamiltonian and dissipative systems ; initial boundary value problems ; nonlinear waves ; partial differential equations ; renormalization method ; soliton equations</subject><ispartof>Nonlinearity, 2022-03, Vol.35 (3), p.1286-1310</ispartof><rights>2022 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</citedby><cites>FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</cites><orcidid>0000-0002-8535-7126 ; 0000-0002-5846-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac4815/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Chandramouli, Sathyanarayanan</creatorcontrib><creatorcontrib>Farhat, Aseel</creatorcontrib><creatorcontrib>H Musslimani, Ziad</creatorcontrib><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</description><subject>Duhamel’s principle</subject><subject>Hamiltonian and dissipative systems</subject><subject>initial boundary value problems</subject><subject>nonlinear waves</subject><subject>partial differential equations</subject><subject>renormalization method</subject><subject>soliton equations</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd3j7l4sy6_2xxlOhUGXuZRQtokLKNNStI69K93o-JJPH18H8_78fIAcI3RHUZVtcBU4EJwxha6YRXmJ2D2ezoFMyQ5LsoS83NwkfMOIYwrQmfgfeM7Wxjb22BsGODDuNWdbWGyIaZOt_5LDz4G2NlhGw3c-2ELu7EdfN9a2MSQbfqYCB0MND5n3097q_f5Epw53WZ79TPn4G31uFk-F-vXp5fl_bpoKEZDQWjJqEWksqWuGZKEaieaQ0MkEEdMS2EIrWvDSkmIrJ0wzslGMsypriU3dA7Q9LdJMedkneqT73T6VBipox51dKGOLtSk5xC5nSI-9moXxxQOBf_Db_7AQwyKckUVJpVQvXH0GxRddHA</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Chandramouli, Sathyanarayanan</creator><creator>Farhat, Aseel</creator><creator>H Musslimani, Ziad</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8535-7126</orcidid><orcidid>https://orcid.org/0000-0002-5846-1219</orcidid></search><sort><creationdate>20220303</creationdate><title>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</title><author>Chandramouli, Sathyanarayanan ; Farhat, Aseel ; H Musslimani, Ziad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-23743e028e7ab40923af6c118060504a96d23bbd479229bf6dff9c94153ab95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Duhamel’s principle</topic><topic>Hamiltonian and dissipative systems</topic><topic>initial boundary value problems</topic><topic>nonlinear waves</topic><topic>partial differential equations</topic><topic>renormalization method</topic><topic>soliton equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandramouli, Sathyanarayanan</creatorcontrib><creatorcontrib>Farhat, Aseel</creatorcontrib><creatorcontrib>H Musslimani, Ziad</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandramouli, Sathyanarayanan</au><au>Farhat, Aseel</au><au>H Musslimani, Ziad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1286</spage><epage>1310</epage><pages>1286-1310</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac4815</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8535-7126</orcidid><orcidid>https://orcid.org/0000-0002-5846-1219</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2022-03, Vol.35 (3), p.1286-1310 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ac4815 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Duhamel’s principle Hamiltonian and dissipative systems initial boundary value problems nonlinear waves partial differential equations renormalization method soliton equations |
title | Time-dependent Duhamel renormalization method with multiple conservation and dissipation laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20Duhamel%20renormalization%20method%20with%20multiple%20conservation%20and%20dissipation%20laws&rft.jtitle=Nonlinearity&rft.au=Chandramouli,%20Sathyanarayanan&rft.date=2022-03-03&rft.volume=35&rft.issue=3&rft.spage=1286&rft.epage=1310&rft.pages=1286-1310&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac4815&rft_dat=%3Ciop_cross%3Enonac4815%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |