On Liouville-type theorems for the 2D stationary MHD equations
We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satis...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2022-02, Vol.35 (2), p.870-888 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 888 |
---|---|
container_issue | 2 |
container_start_page | 870 |
container_title | Nonlinearity |
container_volume | 35 |
creator | De Nitti, Nicola Hounkpe, Francis Schulz, Simon |
description | We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available. |
doi_str_mv | 10.1088/1361-6544/ac3f8b |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac3f8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac3f8b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMoWFfvHvMDrPuStEn2Isiu6wqVveg5JGmKXbpNTVph_72tFW-ehhnePOZD6JbAPQEpl4RxkvI8y5baskqaM5T8RecogVVOUiFIfomuYjwAECIpS9DDvsVF7Yevumlc2p86h_sP54M7Rlz5MBlMNzj2uq99q8MJv-422H0OPz5eo4tKN9Hd_OoCvW-f3ta7tNg_v6wfi9QySvuUM15qMMJkwvFsxUpOpeOipNYyWxldldxqA1RYkZduZUrCIXcCmAWZZUSzBYL5rw0-xuAq1YX6OM5RBNTEryZYNcGqmX-s3M2V2nfq4IfQjgP_P_8GR-1cdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Liouville-type theorems for the 2D stationary MHD equations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</creator><creatorcontrib>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</creatorcontrib><description>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac3f8b</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>incompressible magneto-hydrodynamics (MHD) ; Liouville theorem ; stream function</subject><ispartof>Nonlinearity, 2022-02, Vol.35 (2), p.870-888</ispartof><rights>2021 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</citedby><cites>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</cites><orcidid>0000-0003-0402-7502 ; 0000-0001-8081-0924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac3f8b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Hounkpe, Francis</creatorcontrib><creatorcontrib>Schulz, Simon</creatorcontrib><title>On Liouville-type theorems for the 2D stationary MHD equations</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</description><subject>incompressible magneto-hydrodynamics (MHD)</subject><subject>Liouville theorem</subject><subject>stream function</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0FLxDAUhIMoWFfvHvMDrPuStEn2Isiu6wqVveg5JGmKXbpNTVph_72tFW-ehhnePOZD6JbAPQEpl4RxkvI8y5baskqaM5T8RecogVVOUiFIfomuYjwAECIpS9DDvsVF7Yevumlc2p86h_sP54M7Rlz5MBlMNzj2uq99q8MJv-422H0OPz5eo4tKN9Hd_OoCvW-f3ta7tNg_v6wfi9QySvuUM15qMMJkwvFsxUpOpeOipNYyWxldldxqA1RYkZduZUrCIXcCmAWZZUSzBYL5rw0-xuAq1YX6OM5RBNTEryZYNcGqmX-s3M2V2nfq4IfQjgP_P_8GR-1cdQ</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>De Nitti, Nicola</creator><creator>Hounkpe, Francis</creator><creator>Schulz, Simon</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0001-8081-0924</orcidid></search><sort><creationdate>20220203</creationdate><title>On Liouville-type theorems for the 2D stationary MHD equations</title><author>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>incompressible magneto-hydrodynamics (MHD)</topic><topic>Liouville theorem</topic><topic>stream function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Hounkpe, Francis</creatorcontrib><creatorcontrib>Schulz, Simon</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Nitti, Nicola</au><au>Hounkpe, Francis</au><au>Schulz, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Liouville-type theorems for the 2D stationary MHD equations</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>870</spage><epage>888</epage><pages>870-888</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac3f8b</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0001-8081-0924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2022-02, Vol.35 (2), p.870-888 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ac3f8b |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | incompressible magneto-hydrodynamics (MHD) Liouville theorem stream function |
title | On Liouville-type theorems for the 2D stationary MHD equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Liouville-type%20theorems%20for%20the%202D%20stationary%20MHD%20equations&rft.jtitle=Nonlinearity&rft.au=De%20Nitti,%20Nicola&rft.date=2022-02-03&rft.volume=35&rft.issue=2&rft.spage=870&rft.epage=888&rft.pages=870-888&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac3f8b&rft_dat=%3Ciop_cross%3Enonac3f8b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |