On Liouville-type theorems for the 2D stationary MHD equations

We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2022-02, Vol.35 (2), p.870-888
Hauptverfasser: De Nitti, Nicola, Hounkpe, Francis, Schulz, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 2
container_start_page 870
container_title Nonlinearity
container_volume 35
creator De Nitti, Nicola
Hounkpe, Francis
Schulz, Simon
description We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.
doi_str_mv 10.1088/1361-6544/ac3f8b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ac3f8b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonac3f8b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</originalsourceid><addsrcrecordid>eNp1j0FLxDAUhIMoWFfvHvMDrPuStEn2Isiu6wqVveg5JGmKXbpNTVph_72tFW-ehhnePOZD6JbAPQEpl4RxkvI8y5baskqaM5T8RecogVVOUiFIfomuYjwAECIpS9DDvsVF7Yevumlc2p86h_sP54M7Rlz5MBlMNzj2uq99q8MJv-422H0OPz5eo4tKN9Hd_OoCvW-f3ta7tNg_v6wfi9QySvuUM15qMMJkwvFsxUpOpeOipNYyWxldldxqA1RYkZduZUrCIXcCmAWZZUSzBYL5rw0-xuAq1YX6OM5RBNTEryZYNcGqmX-s3M2V2nfq4IfQjgP_P_8GR-1cdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Liouville-type theorems for the 2D stationary MHD equations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</creator><creatorcontrib>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</creatorcontrib><description>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ac3f8b</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>incompressible magneto-hydrodynamics (MHD) ; Liouville theorem ; stream function</subject><ispartof>Nonlinearity, 2022-02, Vol.35 (2), p.870-888</ispartof><rights>2021 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</citedby><cites>FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</cites><orcidid>0000-0003-0402-7502 ; 0000-0001-8081-0924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ac3f8b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Hounkpe, Francis</creatorcontrib><creatorcontrib>Schulz, Simon</creatorcontrib><title>On Liouville-type theorems for the 2D stationary MHD equations</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</description><subject>incompressible magneto-hydrodynamics (MHD)</subject><subject>Liouville theorem</subject><subject>stream function</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1j0FLxDAUhIMoWFfvHvMDrPuStEn2Isiu6wqVveg5JGmKXbpNTVph_72tFW-ehhnePOZD6JbAPQEpl4RxkvI8y5baskqaM5T8RecogVVOUiFIfomuYjwAECIpS9DDvsVF7Yevumlc2p86h_sP54M7Rlz5MBlMNzj2uq99q8MJv-422H0OPz5eo4tKN9Hd_OoCvW-f3ta7tNg_v6wfi9QySvuUM15qMMJkwvFsxUpOpeOipNYyWxldldxqA1RYkZduZUrCIXcCmAWZZUSzBYL5rw0-xuAq1YX6OM5RBNTEryZYNcGqmX-s3M2V2nfq4IfQjgP_P_8GR-1cdQ</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>De Nitti, Nicola</creator><creator>Hounkpe, Francis</creator><creator>Schulz, Simon</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0001-8081-0924</orcidid></search><sort><creationdate>20220203</creationdate><title>On Liouville-type theorems for the 2D stationary MHD equations</title><author>De Nitti, Nicola ; Hounkpe, Francis ; Schulz, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-636da0b7b47e6493d628e67d2cc3cfbafd6cab027c75de9bd1605e703c08441a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>incompressible magneto-hydrodynamics (MHD)</topic><topic>Liouville theorem</topic><topic>stream function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Hounkpe, Francis</creatorcontrib><creatorcontrib>Schulz, Simon</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Nitti, Nicola</au><au>Hounkpe, Francis</au><au>Schulz, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Liouville-type theorems for the 2D stationary MHD equations</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2022-02-03</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>870</spage><epage>888</epage><pages>870-888</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We establish new Liouville-type theorems for the two-dimensional stationary magneto-hydrodynamic incompressible system assuming that the velocity and magnetic field have bounded Dirichlet integral. The key tool in our proof is observing that the stream function associated to the magnetic field satisfies a simple drift–diffusion equation for which a maximum principle is available.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ac3f8b</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0001-8081-0924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2022-02, Vol.35 (2), p.870-888
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ac3f8b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects incompressible magneto-hydrodynamics (MHD)
Liouville theorem
stream function
title On Liouville-type theorems for the 2D stationary MHD equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Liouville-type%20theorems%20for%20the%202D%20stationary%20MHD%20equations&rft.jtitle=Nonlinearity&rft.au=De%20Nitti,%20Nicola&rft.date=2022-02-03&rft.volume=35&rft.issue=2&rft.spage=870&rft.epage=888&rft.pages=870-888&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ac3f8b&rft_dat=%3Ciop_cross%3Enonac3f8b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true