The r-Hunter-Saxton equation, smooth and singular solutions and their approximation
In this work we introduce the r-Hunter-Saxton equation, a generalisation of the Hunter-Saxton equation arising as extremals of an action principle posed in Lr. We characterise solutions to the Cauchy problem, quantifying the blow-up time and studying various symmetry reductions. We construct piecewi...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2020-12, Vol.33 (12), p.7016-7039 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7039 |
---|---|
container_issue | 12 |
container_start_page | 7016 |
container_title | Nonlinearity |
container_volume | 33 |
creator | Cotter, Colin J Deasy, Jacob Pryer, Tristan |
description | In this work we introduce the r-Hunter-Saxton equation, a generalisation of the Hunter-Saxton equation arising as extremals of an action principle posed in Lr. We characterise solutions to the Cauchy problem, quantifying the blow-up time and studying various symmetry reductions. We construct piecewise linear functions and show that they are weak solutions to the r-Hunter-Saxton equation. |
doi_str_mv | 10.1088/1361-6544/abab4d |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_abab4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonabab4d</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-ffca12ae43497fbc785d8b88296affdb615dfc1786511c753f2d8964d73453c63</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j_kBjc1sPvcoRa1Q8NB6DtlNYre0mzXZhfrv7Vrx5mngnXmGlwehe6APQLWeA5NApOB8bitbcXeBJn_RJZrQUgBRCsQ1usl5RymALtgErTdbjxNZDm3vE1nbYx9b7D8H2zexneF8iLHfYts6nJv2Y9jbhHPcD-M2_8T91jcJ265L8dgcfrBbdBXsPvu73zlF789Pm8WSrN5eXhePK1KzouhJCLWFwnrOeKlCVSstnK60LkppQ3CVBOFCDUpLAVArwULhdCm5U4wLVks2RfT8t04x5-SD6dKpQvoyQM0oxYwGzGjAnKWckNkZaWJndnFI7ang_-ffritlYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The r-Hunter-Saxton equation, smooth and singular solutions and their approximation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Cotter, Colin J ; Deasy, Jacob ; Pryer, Tristan</creator><creatorcontrib>Cotter, Colin J ; Deasy, Jacob ; Pryer, Tristan</creatorcontrib><description>In this work we introduce the r-Hunter-Saxton equation, a generalisation of the Hunter-Saxton equation arising as extremals of an action principle posed in Lr. We characterise solutions to the Cauchy problem, quantifying the blow-up time and studying various symmetry reductions. We construct piecewise linear functions and show that they are weak solutions to the r-Hunter-Saxton equation.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/abab4d</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Lie symmetries ; nonlinear PDEs ; singular solutions</subject><ispartof>Nonlinearity, 2020-12, Vol.33 (12), p.7016-7039</ispartof><rights>2020 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-ffca12ae43497fbc785d8b88296affdb615dfc1786511c753f2d8964d73453c63</citedby><cites>FETCH-LOGICAL-c322t-ffca12ae43497fbc785d8b88296affdb615dfc1786511c753f2d8964d73453c63</cites><orcidid>0000-0001-7962-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/abab4d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Cotter, Colin J</creatorcontrib><creatorcontrib>Deasy, Jacob</creatorcontrib><creatorcontrib>Pryer, Tristan</creatorcontrib><title>The r-Hunter-Saxton equation, smooth and singular solutions and their approximation</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this work we introduce the r-Hunter-Saxton equation, a generalisation of the Hunter-Saxton equation arising as extremals of an action principle posed in Lr. We characterise solutions to the Cauchy problem, quantifying the blow-up time and studying various symmetry reductions. We construct piecewise linear functions and show that they are weak solutions to the r-Hunter-Saxton equation.</description><subject>Lie symmetries</subject><subject>nonlinear PDEs</subject><subject>singular solutions</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LAzEQhoMoWKt3j_kBjc1sPvcoRa1Q8NB6DtlNYre0mzXZhfrv7Vrx5mngnXmGlwehe6APQLWeA5NApOB8bitbcXeBJn_RJZrQUgBRCsQ1usl5RymALtgErTdbjxNZDm3vE1nbYx9b7D8H2zexneF8iLHfYts6nJv2Y9jbhHPcD-M2_8T91jcJ265L8dgcfrBbdBXsPvu73zlF789Pm8WSrN5eXhePK1KzouhJCLWFwnrOeKlCVSstnK60LkppQ3CVBOFCDUpLAVArwULhdCm5U4wLVks2RfT8t04x5-SD6dKpQvoyQM0oxYwGzGjAnKWckNkZaWJndnFI7ang_-ffritlYg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Cotter, Colin J</creator><creator>Deasy, Jacob</creator><creator>Pryer, Tristan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7962-8324</orcidid></search><sort><creationdate>20201201</creationdate><title>The r-Hunter-Saxton equation, smooth and singular solutions and their approximation</title><author>Cotter, Colin J ; Deasy, Jacob ; Pryer, Tristan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-ffca12ae43497fbc785d8b88296affdb615dfc1786511c753f2d8964d73453c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Lie symmetries</topic><topic>nonlinear PDEs</topic><topic>singular solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotter, Colin J</creatorcontrib><creatorcontrib>Deasy, Jacob</creatorcontrib><creatorcontrib>Pryer, Tristan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotter, Colin J</au><au>Deasy, Jacob</au><au>Pryer, Tristan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The r-Hunter-Saxton equation, smooth and singular solutions and their approximation</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>12</issue><spage>7016</spage><epage>7039</epage><pages>7016-7039</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this work we introduce the r-Hunter-Saxton equation, a generalisation of the Hunter-Saxton equation arising as extremals of an action principle posed in Lr. We characterise solutions to the Cauchy problem, quantifying the blow-up time and studying various symmetry reductions. We construct piecewise linear functions and show that they are weak solutions to the r-Hunter-Saxton equation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/abab4d</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7962-8324</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2020-12, Vol.33 (12), p.7016-7039 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_abab4d |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Lie symmetries nonlinear PDEs singular solutions |
title | The r-Hunter-Saxton equation, smooth and singular solutions and their approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20r-Hunter-Saxton%20equation,%20smooth%20and%20singular%20solutions%20and%20their%20approximation&rft.jtitle=Nonlinearity&rft.au=Cotter,%20Colin%20J&rft.date=2020-12-01&rft.volume=33&rft.issue=12&rft.spage=7016&rft.epage=7039&rft.pages=7016-7039&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/abab4d&rft_dat=%3Ciop_cross%3Enonabab4d%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |