Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages

In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2020-12, Vol.33 (12), p.6624-6661
Hauptverfasser: Li, Zhuchun, Zhao, Xiaoxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6661
container_issue 12
container_start_page 6624
container_title Nonlinearity
container_volume 33
creator Li, Zhuchun
Zhao, Xiaoxue
description In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.
doi_str_mv 10.1088/1361-6544/ab9a1f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ab9a1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab9a1f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOKd3j_kDrEuapEmPMtSJAw_-uIZv03TL6JqSZBvzr3el4s3Tg8d7j8cHoVtK7ilRakZZQbNCcD6DqgTanKHJn3WOJqQUNJOSikt0FeOGEEpVzibo6_3YmXXwnfuG5HyHXYehhj65vcWvuwBbnzz20bi2heRDxI0PuPcHG_AquDrig0trXB872DqD975NsLLxGl000EZ786tT9Pn0-DFfZMu355f5wzIzuSIp400JhbANzZniVaVIWdaVrFkBhtV5aVQuC8mltZwRJSShXHIOVuTFKS-4YlNExl0TfIzBNroPbgvhqCnRAxc9QNADBD1yOVXuxorzvd74XehOB_-P_wDpkGVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Li, Zhuchun ; Zhao, Xiaoxue</creator><creatorcontrib>Li, Zhuchun ; Zhao, Xiaoxue</creatorcontrib><description>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab9a1f</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive couplings ; dynamic voltages ; gradient-like flow ; Kuramoto oscillators ; power grids ; synchronization</subject><ispartof>Nonlinearity, 2020-12, Vol.33 (12), p.6624-6661</ispartof><rights>2020 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</citedby><cites>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</cites><orcidid>0000-0001-5278-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ab9a1f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Li, Zhuchun</creatorcontrib><creatorcontrib>Zhao, Xiaoxue</creatorcontrib><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</description><subject>adaptive couplings</subject><subject>dynamic voltages</subject><subject>gradient-like flow</subject><subject>Kuramoto oscillators</subject><subject>power grids</subject><subject>synchronization</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAcxYMoOKd3j_kDrEuapEmPMtSJAw_-uIZv03TL6JqSZBvzr3el4s3Tg8d7j8cHoVtK7ilRakZZQbNCcD6DqgTanKHJn3WOJqQUNJOSikt0FeOGEEpVzibo6_3YmXXwnfuG5HyHXYehhj65vcWvuwBbnzz20bi2heRDxI0PuPcHG_AquDrig0trXB872DqD975NsLLxGl000EZ786tT9Pn0-DFfZMu355f5wzIzuSIp400JhbANzZniVaVIWdaVrFkBhtV5aVQuC8mltZwRJSShXHIOVuTFKS-4YlNExl0TfIzBNroPbgvhqCnRAxc9QNADBD1yOVXuxorzvd74XehOB_-P_wDpkGVS</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Zhuchun</creator><creator>Zhao, Xiaoxue</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5278-1927</orcidid></search><sort><creationdate>20201201</creationdate><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><author>Li, Zhuchun ; Zhao, Xiaoxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive couplings</topic><topic>dynamic voltages</topic><topic>gradient-like flow</topic><topic>Kuramoto oscillators</topic><topic>power grids</topic><topic>synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhuchun</creatorcontrib><creatorcontrib>Zhao, Xiaoxue</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhuchun</au><au>Zhao, Xiaoxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>12</issue><spage>6624</spage><epage>6661</epage><pages>6624-6661</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab9a1f</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-5278-1927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2020-12, Vol.33 (12), p.6624-6661
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_ab9a1f
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
subjects adaptive couplings
dynamic voltages
gradient-like flow
Kuramoto oscillators
power grids
synchronization
title Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20adaptive%20Kuramoto%20oscillators%20for%20power%20grids%20with%20dynamic%20voltages&rft.jtitle=Nonlinearity&rft.au=Li,%20Zhuchun&rft.date=2020-12-01&rft.volume=33&rft.issue=12&rft.spage=6624&rft.epage=6661&rft.pages=6624-6661&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab9a1f&rft_dat=%3Ciop_cross%3Enonab9a1f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true