Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages
In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2020-12, Vol.33 (12), p.6624-6661 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6661 |
---|---|
container_issue | 12 |
container_start_page | 6624 |
container_title | Nonlinearity |
container_volume | 33 |
creator | Li, Zhuchun Zhao, Xiaoxue |
description | In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system. |
doi_str_mv | 10.1088/1361-6544/ab9a1f |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_ab9a1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonab9a1f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</originalsourceid><addsrcrecordid>eNp1kM9LwzAcxYMoOKd3j_kDrEuapEmPMtSJAw_-uIZv03TL6JqSZBvzr3el4s3Tg8d7j8cHoVtK7ilRakZZQbNCcD6DqgTanKHJn3WOJqQUNJOSikt0FeOGEEpVzibo6_3YmXXwnfuG5HyHXYehhj65vcWvuwBbnzz20bi2heRDxI0PuPcHG_AquDrig0trXB872DqD975NsLLxGl000EZ786tT9Pn0-DFfZMu355f5wzIzuSIp400JhbANzZniVaVIWdaVrFkBhtV5aVQuC8mltZwRJSShXHIOVuTFKS-4YlNExl0TfIzBNroPbgvhqCnRAxc9QNADBD1yOVXuxorzvd74XehOB_-P_wDpkGVS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Li, Zhuchun ; Zhao, Xiaoxue</creator><creatorcontrib>Li, Zhuchun ; Zhao, Xiaoxue</creatorcontrib><description>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/ab9a1f</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive couplings ; dynamic voltages ; gradient-like flow ; Kuramoto oscillators ; power grids ; synchronization</subject><ispartof>Nonlinearity, 2020-12, Vol.33 (12), p.6624-6661</ispartof><rights>2020 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</citedby><cites>FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</cites><orcidid>0000-0001-5278-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/ab9a1f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Li, Zhuchun</creatorcontrib><creatorcontrib>Zhao, Xiaoxue</creatorcontrib><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</description><subject>adaptive couplings</subject><subject>dynamic voltages</subject><subject>gradient-like flow</subject><subject>Kuramoto oscillators</subject><subject>power grids</subject><subject>synchronization</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAcxYMoOKd3j_kDrEuapEmPMtSJAw_-uIZv03TL6JqSZBvzr3el4s3Tg8d7j8cHoVtK7ilRakZZQbNCcD6DqgTanKHJn3WOJqQUNJOSikt0FeOGEEpVzibo6_3YmXXwnfuG5HyHXYehhj65vcWvuwBbnzz20bi2heRDxI0PuPcHG_AquDrig0trXB872DqD975NsLLxGl000EZ786tT9Pn0-DFfZMu355f5wzIzuSIp400JhbANzZniVaVIWdaVrFkBhtV5aVQuC8mltZwRJSShXHIOVuTFKS-4YlNExl0TfIzBNroPbgvhqCnRAxc9QNADBD1yOVXuxorzvd74XehOB_-P_wDpkGVS</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Li, Zhuchun</creator><creator>Zhao, Xiaoxue</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5278-1927</orcidid></search><sort><creationdate>20201201</creationdate><title>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</title><author>Li, Zhuchun ; Zhao, Xiaoxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4f9a65ef12384bb8099db7d36ac3d29c8276747ee430857014744ae5263845483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive couplings</topic><topic>dynamic voltages</topic><topic>gradient-like flow</topic><topic>Kuramoto oscillators</topic><topic>power grids</topic><topic>synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhuchun</creatorcontrib><creatorcontrib>Zhao, Xiaoxue</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhuchun</au><au>Zhao, Xiaoxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>33</volume><issue>12</issue><spage>6624</spage><epage>6661</epage><pages>6624-6661</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>In this paper we are concerned with a coupled system of Kuramoto oscillators for power grids with dynamic voltages. Among various models describing the dynamics of synchronous generators, analytic results are available mainly for the second-order model with constant voltages which describes only the dynamics of rotor angles. It is known that two of the most important forms for power system stability are rotor angle stability and voltage stability. Schmietendorf et al (2014 Eur. Phys. J. 223 2577-2592) derived a model of adaptive Kuramoto oscillators for the power grids with dynamic voltages and carried out some numerical studies. In this model, the transient dynamics of voltages is incorporated and the voltage dynamics could be considered together with rotor angle dynamics. In this article, we will consider this model and derive some analytic results for the synchronization of phase angles and stabilization of voltages. We will find a region of attraction for a class of steady states which is explicitly expressed in the parameters of system.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/ab9a1f</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-5278-1927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2020-12, Vol.33 (12), p.6624-6661 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_ab9a1f |
source | HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals |
subjects | adaptive couplings dynamic voltages gradient-like flow Kuramoto oscillators power grids synchronization |
title | Synchronization in adaptive Kuramoto oscillators for power grids with dynamic voltages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20adaptive%20Kuramoto%20oscillators%20for%20power%20grids%20with%20dynamic%20voltages&rft.jtitle=Nonlinearity&rft.au=Li,%20Zhuchun&rft.date=2020-12-01&rft.volume=33&rft.issue=12&rft.spage=6624&rft.epage=6661&rft.pages=6624-6661&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/ab9a1f&rft_dat=%3Ciop_cross%3Enonab9a1f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |