Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation
The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits-as an explicit solution-a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2018-12, Vol.31 (12), p.5351-5384 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5384 |
---|---|
container_issue | 12 |
container_start_page | 5351 |
container_title | Nonlinearity |
container_volume | 31 |
creator | Ehrnström, Mats Groves, Mark D |
description | The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits-as an explicit solution-a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently there has been interest in the full-dispersion KP-I equation where is the Fourier multiplier with symbol which is obtained by retaining the exact dispersion relation from the water-wave problem. In this paper we show that the FDKP-I equation also has a fully localised solitary-wave solution. The existence theory is variational and perturbative in nature. A variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the variational functional associated with fully localised solitary-wave solutions of the KP-I equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set. |
doi_str_mv | 10.1088/1361-6544/aadf3f |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aadf3f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaadf3f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4228c7ed3c255f5a6b1320b7e2e0a407bea4259c01b367bc9d46990a0654be4c3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePeYPMG6Spl9HWfzCBQX1XKbphM2SbmrSVva_t0vFm6eBee8Nb36EXAt-K3hRrESSCZalSq0AGpOYE7L4W52SBS9TwfJcpOfkIsYd50IUMlkQ896Ccwzaztl-aJCawbkDdV6DsxEbGv0kQDjQbxgxUuMD7bezjTU2dhii9Xv6Ao1v-4gje8N-tBC3o3WW4tcA_aRfkjMDLuLV71ySz4f7j_UT27w-Pq_vNkzLgvdMSVnoHJtEyzQ1KWS1SCSvc5TIQfG8RlAyLTUXdZLltS4blZUlBz59WaPSyZLw-a4OPsaApuqCbaf6leDVkVN1hFIdoVQzpylyM0es76qdH8J-Kvi__Qds_mz7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ehrnström, Mats ; Groves, Mark D</creator><creatorcontrib>Ehrnström, Mats ; Groves, Mark D</creatorcontrib><description>The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits-as an explicit solution-a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently there has been interest in the full-dispersion KP-I equation where is the Fourier multiplier with symbol which is obtained by retaining the exact dispersion relation from the water-wave problem. In this paper we show that the FDKP-I equation also has a fully localised solitary-wave solution. The existence theory is variational and perturbative in nature. A variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the variational functional associated with fully localised solitary-wave solutions of the KP-I equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aadf3f</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>calculus of variations ; full dispersion KP equation ; solitary waves</subject><ispartof>Nonlinearity, 2018-12, Vol.31 (12), p.5351-5384</ispartof><rights>2018 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4228c7ed3c255f5a6b1320b7e2e0a407bea4259c01b367bc9d46990a0654be4c3</citedby><cites>FETCH-LOGICAL-c280t-4228c7ed3c255f5a6b1320b7e2e0a407bea4259c01b367bc9d46990a0654be4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aadf3f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27926,27927,53848,53895</link.rule.ids></links><search><creatorcontrib>Ehrnström, Mats</creatorcontrib><creatorcontrib>Groves, Mark D</creatorcontrib><title>Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits-as an explicit solution-a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently there has been interest in the full-dispersion KP-I equation where is the Fourier multiplier with symbol which is obtained by retaining the exact dispersion relation from the water-wave problem. In this paper we show that the FDKP-I equation also has a fully localised solitary-wave solution. The existence theory is variational and perturbative in nature. A variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the variational functional associated with fully localised solitary-wave solutions of the KP-I equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.</description><subject>calculus of variations</subject><subject>full dispersion KP equation</subject><subject>solitary waves</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePeYPMG6Spl9HWfzCBQX1XKbphM2SbmrSVva_t0vFm6eBee8Nb36EXAt-K3hRrESSCZalSq0AGpOYE7L4W52SBS9TwfJcpOfkIsYd50IUMlkQ896Ccwzaztl-aJCawbkDdV6DsxEbGv0kQDjQbxgxUuMD7bezjTU2dhii9Xv6Ao1v-4gje8N-tBC3o3WW4tcA_aRfkjMDLuLV71ySz4f7j_UT27w-Pq_vNkzLgvdMSVnoHJtEyzQ1KWS1SCSvc5TIQfG8RlAyLTUXdZLltS4blZUlBz59WaPSyZLw-a4OPsaApuqCbaf6leDVkVN1hFIdoVQzpylyM0es76qdH8J-Kvi__Qds_mz7</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ehrnström, Mats</creator><creator>Groves, Mark D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation</title><author>Ehrnström, Mats ; Groves, Mark D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4228c7ed3c255f5a6b1320b7e2e0a407bea4259c01b367bc9d46990a0654be4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>calculus of variations</topic><topic>full dispersion KP equation</topic><topic>solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrnström, Mats</creatorcontrib><creatorcontrib>Groves, Mark D</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrnström, Mats</au><au>Groves, Mark D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>31</volume><issue>12</issue><spage>5351</spage><epage>5384</epage><pages>5351-5384</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with strong surface tension (Bond number ). This equation admits-as an explicit solution-a 'fully localised' or 'lump' solitary wave which decays to zero in all spatial directions. Recently there has been interest in the full-dispersion KP-I equation where is the Fourier multiplier with symbol which is obtained by retaining the exact dispersion relation from the water-wave problem. In this paper we show that the FDKP-I equation also has a fully localised solitary-wave solution. The existence theory is variational and perturbative in nature. A variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the variational functional associated with fully localised solitary-wave solutions of the KP-I equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aadf3f</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2018-12, Vol.31 (12), p.5351-5384 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_aadf3f |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | calculus of variations full dispersion KP equation solitary waves |
title | Small-amplitude fully localised solitary waves for the full-dispersion Kadomtsev-Petviashvili equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-amplitude%20fully%20localised%20solitary%20waves%20for%20the%20full-dispersion%20Kadomtsev-Petviashvili%20equation&rft.jtitle=Nonlinearity&rft.au=Ehrnstr%C3%B6m,%20Mats&rft.date=2018-12-01&rft.volume=31&rft.issue=12&rft.spage=5351&rft.epage=5384&rft.pages=5351-5384&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aadf3f&rft_dat=%3Ciop_cross%3Enonaadf3f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |