Infinite mixing for one-dimensional maps with an indifferent fixed point
We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All ma...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2018-11, Vol.31 (11), p.5180-5213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5213 |
---|---|
container_issue | 11 |
container_start_page | 5180 |
container_title | Nonlinearity |
container_volume | 31 |
creator | Bonanno, Claudio Giulietti, Paolo Lenci, Marco |
description | We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps. |
doi_str_mv | 10.1088/1361-6544/aadc04 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aadc04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaadc04</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3j_kBrs2bbDbZoxS1hYIXPYeYD31LN1mSFeu_11Lx5mlgmBl4hpBrYLfAtF6A6KDpZNsurPWOtSdk9medkhnrJTRKgTwnF7VuGQPQXMzIap0iJpwCHXCP6Y3GXGhOofE4hFQxJ7ujgx0r_cTpndpEMXmMMZSQJhpxHzwdM6bpkpxFu6vh6lfn5OXh_nm5ajZPj-vl3aZxXLOp0YIp1_U8eMGclX0A2VkplPSvwNseHPc-cN12TkuuZGyV8oxzJoUFCTGIOWHHXVdyrSVEMxYcbPkywMzhCXPANgdsc3zip3JzrGAezTZ_lB-m-n_8G4hMX1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><source>Institute of Physics Journals</source><creator>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</creator><creatorcontrib>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</creatorcontrib><description>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aadc04</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>exactness ; Farey map ; global-local mixing ; infinite ergodic theory ; infinite-volume mixing ; neutral fixed point ; Pomeau-Manneville maps</subject><ispartof>Nonlinearity, 2018-11, Vol.31 (11), p.5180-5213</ispartof><rights>2018 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</citedby><cites>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</cites><orcidid>0000-0002-4283-7488 ; 0000-0001-9604-1699 ; 0000-0002-6204-7678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aadc04/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Bonanno, Claudio</creatorcontrib><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Lenci, Marco</creatorcontrib><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</description><subject>exactness</subject><subject>Farey map</subject><subject>global-local mixing</subject><subject>infinite ergodic theory</subject><subject>infinite-volume mixing</subject><subject>neutral fixed point</subject><subject>Pomeau-Manneville maps</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKt3j_kBrs2bbDbZoxS1hYIXPYeYD31LN1mSFeu_11Lx5mlgmBl4hpBrYLfAtF6A6KDpZNsurPWOtSdk9medkhnrJTRKgTwnF7VuGQPQXMzIap0iJpwCHXCP6Y3GXGhOofE4hFQxJ7ujgx0r_cTpndpEMXmMMZSQJhpxHzwdM6bpkpxFu6vh6lfn5OXh_nm5ajZPj-vl3aZxXLOp0YIp1_U8eMGclX0A2VkplPSvwNseHPc-cN12TkuuZGyV8oxzJoUFCTGIOWHHXVdyrSVEMxYcbPkywMzhCXPANgdsc3zip3JzrGAezTZ_lB-m-n_8G4hMX1E</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Bonanno, Claudio</creator><creator>Giulietti, Paolo</creator><creator>Lenci, Marco</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4283-7488</orcidid><orcidid>https://orcid.org/0000-0001-9604-1699</orcidid><orcidid>https://orcid.org/0000-0002-6204-7678</orcidid></search><sort><creationdate>20181101</creationdate><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><author>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>exactness</topic><topic>Farey map</topic><topic>global-local mixing</topic><topic>infinite ergodic theory</topic><topic>infinite-volume mixing</topic><topic>neutral fixed point</topic><topic>Pomeau-Manneville maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonanno, Claudio</creatorcontrib><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Lenci, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonanno, Claudio</au><au>Giulietti, Paolo</au><au>Lenci, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite mixing for one-dimensional maps with an indifferent fixed point</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>31</volume><issue>11</issue><spage>5180</spage><epage>5213</epage><pages>5180-5213</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aadc04</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-4283-7488</orcidid><orcidid>https://orcid.org/0000-0001-9604-1699</orcidid><orcidid>https://orcid.org/0000-0002-6204-7678</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2018-11, Vol.31 (11), p.5180-5213 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_aadc04 |
source | Institute of Physics Journals |
subjects | exactness Farey map global-local mixing infinite ergodic theory infinite-volume mixing neutral fixed point Pomeau-Manneville maps |
title | Infinite mixing for one-dimensional maps with an indifferent fixed point |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20mixing%20for%20one-dimensional%20maps%20with%20an%20indifferent%20fixed%20point&rft.jtitle=Nonlinearity&rft.au=Bonanno,%20Claudio&rft.date=2018-11-01&rft.volume=31&rft.issue=11&rft.spage=5180&rft.epage=5213&rft.pages=5180-5213&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aadc04&rft_dat=%3Ciop_cross%3Enonaadc04%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |