Infinite mixing for one-dimensional maps with an indifferent fixed point

We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinearity 2018-11, Vol.31 (11), p.5180-5213
Hauptverfasser: Bonanno, Claudio, Giulietti, Paolo, Lenci, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5213
container_issue 11
container_start_page 5180
container_title Nonlinearity
container_volume 31
creator Bonanno, Claudio
Giulietti, Paolo
Lenci, Marco
description We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.
doi_str_mv 10.1088/1361-6544/aadc04
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aadc04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaadc04</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3j_kBrs2bbDbZoxS1hYIXPYeYD31LN1mSFeu_11Lx5mlgmBl4hpBrYLfAtF6A6KDpZNsurPWOtSdk9medkhnrJTRKgTwnF7VuGQPQXMzIap0iJpwCHXCP6Y3GXGhOofE4hFQxJ7ujgx0r_cTpndpEMXmMMZSQJhpxHzwdM6bpkpxFu6vh6lfn5OXh_nm5ajZPj-vl3aZxXLOp0YIp1_U8eMGclX0A2VkplPSvwNseHPc-cN12TkuuZGyV8oxzJoUFCTGIOWHHXVdyrSVEMxYcbPkywMzhCXPANgdsc3zip3JzrGAezTZ_lB-m-n_8G4hMX1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><source>Institute of Physics Journals</source><creator>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</creator><creatorcontrib>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</creatorcontrib><description>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aadc04</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>exactness ; Farey map ; global-local mixing ; infinite ergodic theory ; infinite-volume mixing ; neutral fixed point ; Pomeau-Manneville maps</subject><ispartof>Nonlinearity, 2018-11, Vol.31 (11), p.5180-5213</ispartof><rights>2018 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</citedby><cites>FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</cites><orcidid>0000-0002-4283-7488 ; 0000-0001-9604-1699 ; 0000-0002-6204-7678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aadc04/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Bonanno, Claudio</creatorcontrib><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Lenci, Marco</creatorcontrib><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</description><subject>exactness</subject><subject>Farey map</subject><subject>global-local mixing</subject><subject>infinite ergodic theory</subject><subject>infinite-volume mixing</subject><subject>neutral fixed point</subject><subject>Pomeau-Manneville maps</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKt3j_kBrs2bbDbZoxS1hYIXPYeYD31LN1mSFeu_11Lx5mlgmBl4hpBrYLfAtF6A6KDpZNsurPWOtSdk9medkhnrJTRKgTwnF7VuGQPQXMzIap0iJpwCHXCP6Y3GXGhOofE4hFQxJ7ujgx0r_cTpndpEMXmMMZSQJhpxHzwdM6bpkpxFu6vh6lfn5OXh_nm5ajZPj-vl3aZxXLOp0YIp1_U8eMGclX0A2VkplPSvwNseHPc-cN12TkuuZGyV8oxzJoUFCTGIOWHHXVdyrSVEMxYcbPkywMzhCXPANgdsc3zip3JzrGAezTZ_lB-m-n_8G4hMX1E</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Bonanno, Claudio</creator><creator>Giulietti, Paolo</creator><creator>Lenci, Marco</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4283-7488</orcidid><orcidid>https://orcid.org/0000-0001-9604-1699</orcidid><orcidid>https://orcid.org/0000-0002-6204-7678</orcidid></search><sort><creationdate>20181101</creationdate><title>Infinite mixing for one-dimensional maps with an indifferent fixed point</title><author>Bonanno, Claudio ; Giulietti, Paolo ; Lenci, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-8307c692ed30ca59e156a5375db12491c2dde2846c85275f477d022053a151fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>exactness</topic><topic>Farey map</topic><topic>global-local mixing</topic><topic>infinite ergodic theory</topic><topic>infinite-volume mixing</topic><topic>neutral fixed point</topic><topic>Pomeau-Manneville maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonanno, Claudio</creatorcontrib><creatorcontrib>Giulietti, Paolo</creatorcontrib><creatorcontrib>Lenci, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonanno, Claudio</au><au>Giulietti, Paolo</au><au>Lenci, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite mixing for one-dimensional maps with an indifferent fixed point</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>31</volume><issue>11</issue><spage>5180</spage><epage>5213</epage><pages>5180-5213</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We study the properties of 'infinite-volume mixing' for two classes of intermittent maps: expanding maps with an indifferent fixed point at 0 preserving an infinite, absolutely continuous measure, and expanding maps with an indifferent fixed point at preserving the Lebesgue measure. All maps have full branches. While certain properties are easily adjudicated, the so-called global-local mixing, namely the decorrelation of a global and a local observable, is harder to prove. We do this for two subclasses of systems. The first subclass includes, among others, the Farey map. The second class includes the standard Pomeau-Manneville map mod 1. Morevoer, we use global-local mixing to prove certain limit theorems for our intermittent maps.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aadc04</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-4283-7488</orcidid><orcidid>https://orcid.org/0000-0001-9604-1699</orcidid><orcidid>https://orcid.org/0000-0002-6204-7678</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2018-11, Vol.31 (11), p.5180-5213
issn 0951-7715
1361-6544
language eng
recordid cdi_crossref_primary_10_1088_1361_6544_aadc04
source Institute of Physics Journals
subjects exactness
Farey map
global-local mixing
infinite ergodic theory
infinite-volume mixing
neutral fixed point
Pomeau-Manneville maps
title Infinite mixing for one-dimensional maps with an indifferent fixed point
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20mixing%20for%20one-dimensional%20maps%20with%20an%20indifferent%20fixed%20point&rft.jtitle=Nonlinearity&rft.au=Bonanno,%20Claudio&rft.date=2018-11-01&rft.volume=31&rft.issue=11&rft.spage=5180&rft.epage=5213&rft.pages=5180-5213&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aadc04&rft_dat=%3Ciop_cross%3Enonaadc04%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true