The baker's map with a convex hole
We consider the baker's map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as thos...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2018-07, Vol.31 (7), p.3174-3202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3202 |
---|---|
container_issue | 7 |
container_start_page | 3174 |
container_title | Nonlinearity |
container_volume | 31 |
creator | Clark, Lyndsey Hare, Kevin G Sidorov, Nikita |
description | We consider the baker's map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as those for which any periodic trajectory of B intersects (cycle traps). We show that any H which lies in the interior of X is not a dimension trap. This means that, unlike the doubling map and other one-dimensional examples, we can have for H whose Lebesgue measure is arbitrarily close to one. Also, we describe holes which are dimension or cycle traps, critical in the sense that if we consider a strictly convex subset, then the corresponding property in question no longer holds. We also determine such that for all convex H whose Lebesgue measure is less than δ. This paper may be seen as a first extension of our work begun in Clark (2016 Discrete Continuous Dyn. Syst. A 6 1249-69; Clark 2016 PhD Dissertation The University of Manchester; Glendinning and Sidorov 2015 Ergod. Theor. Dynam. Syst. 35 1208-28; Hare and Sidorov 2014 Mon.hefte Math. 175 347-65; Sidorov 2014 Acta Math. Hung. 143 298-312) to higher dimensions. |
doi_str_mv | 10.1088/1361-6544/aab595 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6544_aab595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nonaab595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-a73b6331d41b0a42bd5968a75da9a7a3bc73f698f84e37a0e0cbb730e4bf8a103</originalsourceid><addsrcrecordid>eNp1j71PwzAUxC0EEqGwM1osLIS-F9uxM6KKL6kSS5mt58RWUtomssvXf0-jIDamk053p_sxdolwi2DMHEWJeamknBM5Vakjlv1ZxyyDSmGuNapTdpbSGgDRFCJjV6vWc0dvPl4nvqWBf3b7lhOv-92H_-Jtv_Hn7CTQJvmLX52x14f71eIpX748Pi_ulnldGNjnpIUrhcBGogOShWtUVRrSqqGKNAlXaxHKygQjvdAEHmrntAAvXTCEIGYMpt069ilFH-wQuy3Fb4tgR0Y7AtkRyE6Mh8rNVOn6wa7797g7HPw__gMBpVDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The baker's map with a convex hole</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Clark, Lyndsey ; Hare, Kevin G ; Sidorov, Nikita</creator><creatorcontrib>Clark, Lyndsey ; Hare, Kevin G ; Sidorov, Nikita</creatorcontrib><description>We consider the baker's map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as those for which any periodic trajectory of B intersects (cycle traps). We show that any H which lies in the interior of X is not a dimension trap. This means that, unlike the doubling map and other one-dimensional examples, we can have for H whose Lebesgue measure is arbitrarily close to one. Also, we describe holes which are dimension or cycle traps, critical in the sense that if we consider a strictly convex subset, then the corresponding property in question no longer holds. We also determine such that for all convex H whose Lebesgue measure is less than δ. This paper may be seen as a first extension of our work begun in Clark (2016 Discrete Continuous Dyn. Syst. A 6 1249-69; Clark 2016 PhD Dissertation The University of Manchester; Glendinning and Sidorov 2015 Ergod. Theor. Dynam. Syst. 35 1208-28; Hare and Sidorov 2014 Mon.hefte Math. 175 347-65; Sidorov 2014 Acta Math. Hung. 143 298-312) to higher dimensions.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/1361-6544/aab595</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>baker's map ; dimension ; open dynamical systems</subject><ispartof>Nonlinearity, 2018-07, Vol.31 (7), p.3174-3202</ispartof><rights>2018 IOP Publishing Ltd & London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-a73b6331d41b0a42bd5968a75da9a7a3bc73f698f84e37a0e0cbb730e4bf8a103</citedby><cites>FETCH-LOGICAL-c280t-a73b6331d41b0a42bd5968a75da9a7a3bc73f698f84e37a0e0cbb730e4bf8a103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6544/aab595/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Clark, Lyndsey</creatorcontrib><creatorcontrib>Hare, Kevin G</creatorcontrib><creatorcontrib>Sidorov, Nikita</creatorcontrib><title>The baker's map with a convex hole</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We consider the baker's map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as those for which any periodic trajectory of B intersects (cycle traps). We show that any H which lies in the interior of X is not a dimension trap. This means that, unlike the doubling map and other one-dimensional examples, we can have for H whose Lebesgue measure is arbitrarily close to one. Also, we describe holes which are dimension or cycle traps, critical in the sense that if we consider a strictly convex subset, then the corresponding property in question no longer holds. We also determine such that for all convex H whose Lebesgue measure is less than δ. This paper may be seen as a first extension of our work begun in Clark (2016 Discrete Continuous Dyn. Syst. A 6 1249-69; Clark 2016 PhD Dissertation The University of Manchester; Glendinning and Sidorov 2015 Ergod. Theor. Dynam. Syst. 35 1208-28; Hare and Sidorov 2014 Mon.hefte Math. 175 347-65; Sidorov 2014 Acta Math. Hung. 143 298-312) to higher dimensions.</description><subject>baker's map</subject><subject>dimension</subject><subject>open dynamical systems</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1j71PwzAUxC0EEqGwM1osLIS-F9uxM6KKL6kSS5mt58RWUtomssvXf0-jIDamk053p_sxdolwi2DMHEWJeamknBM5Vakjlv1ZxyyDSmGuNapTdpbSGgDRFCJjV6vWc0dvPl4nvqWBf3b7lhOv-92H_-Jtv_Hn7CTQJvmLX52x14f71eIpX748Pi_ulnldGNjnpIUrhcBGogOShWtUVRrSqqGKNAlXaxHKygQjvdAEHmrntAAvXTCEIGYMpt069ilFH-wQuy3Fb4tgR0Y7AtkRyE6Mh8rNVOn6wa7797g7HPw__gMBpVDk</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Clark, Lyndsey</creator><creator>Hare, Kevin G</creator><creator>Sidorov, Nikita</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>The baker's map with a convex hole</title><author>Clark, Lyndsey ; Hare, Kevin G ; Sidorov, Nikita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-a73b6331d41b0a42bd5968a75da9a7a3bc73f698f84e37a0e0cbb730e4bf8a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>baker's map</topic><topic>dimension</topic><topic>open dynamical systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Lyndsey</creatorcontrib><creatorcontrib>Hare, Kevin G</creatorcontrib><creatorcontrib>Sidorov, Nikita</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Lyndsey</au><au>Hare, Kevin G</au><au>Sidorov, Nikita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The baker's map with a convex hole</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>31</volume><issue>7</issue><spage>3174</spage><epage>3202</epage><pages>3174-3202</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We consider the baker's map B on the unit square X and an open convex set which we regard as a hole. The survivor set is defined as the set of all points in X whose B-trajectories are disjoint from H. The main purpose of this paper is to study holes H for which (dimension traps) as well as those for which any periodic trajectory of B intersects (cycle traps). We show that any H which lies in the interior of X is not a dimension trap. This means that, unlike the doubling map and other one-dimensional examples, we can have for H whose Lebesgue measure is arbitrarily close to one. Also, we describe holes which are dimension or cycle traps, critical in the sense that if we consider a strictly convex subset, then the corresponding property in question no longer holds. We also determine such that for all convex H whose Lebesgue measure is less than δ. This paper may be seen as a first extension of our work begun in Clark (2016 Discrete Continuous Dyn. Syst. A 6 1249-69; Clark 2016 PhD Dissertation The University of Manchester; Glendinning and Sidorov 2015 Ergod. Theor. Dynam. Syst. 35 1208-28; Hare and Sidorov 2014 Mon.hefte Math. 175 347-65; Sidorov 2014 Acta Math. Hung. 143 298-312) to higher dimensions.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6544/aab595</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-7715 |
ispartof | Nonlinearity, 2018-07, Vol.31 (7), p.3174-3202 |
issn | 0951-7715 1361-6544 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6544_aab595 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | baker's map dimension open dynamical systems |
title | The baker's map with a convex hole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20baker's%20map%20with%20a%20convex%20hole&rft.jtitle=Nonlinearity&rft.au=Clark,%20Lyndsey&rft.date=2018-07-01&rft.volume=31&rft.issue=7&rft.spage=3174&rft.epage=3202&rft.pages=3174-3202&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/1361-6544/aab595&rft_dat=%3Ciop_cross%3Enonaab595%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |