High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells
The expansion of pluripotent stem cells (PSCs) in vitro remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hinde...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2024-11, Vol.35 (45), p.455101 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 45 |
container_start_page | 455101 |
container_title | Nanotechnology |
container_volume | 35 |
creator | Conner, Abigail A Yao, Yuan Chan, Sarah W Jain, Deepak Wong, Suzanne M Yim, Evelyn K F Rizwan, Muhammad |
description | The expansion of pluripotent stem cells (PSCs) in vitro remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markers Oct4, Nanog, and Sox2 and the differentiation marker LmnA as well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1 µm pillars (1 µm spacing, square arrangement), 2 µm wells (c-c (x,y) = 4, 4 µm), and 5 µm pillars (c-c (x,y) = 7.5, 7.5 µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion. |
doi_str_mv | 10.1088/1361-6528/ad6994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ad6994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086954195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-b6dca1cb67e3064dba22396efac4c40079b6ff002200c560fe4dd7062f3f578a3</originalsourceid><addsrcrecordid>eNp1kEtr3DAUhUVpaCaT7LsqWnYRJ1cPy9ayhLxgIJtkLWRZGjvYlirJ0Pn3sZl0dlkduHzncPkQ-knghkBd3xImSCFKWt_qVkjJv6HN6fQdbUCWVcF5zc_RRUrvAITUlPxA50xCzSljG6Sf-n1X5C76ed-FOWM96eGQ-oS9w9kHv486dL3RAzazTdj5iHNnsf0X9JR6P63cOMd-sjgMSwaf7ZRxynbExg5DukRnTg_JXn3mFr093L_ePRW7l8fnuz-7wlAic9GI1mhiGlFZBoK3jaaUSWGdNtxwgEo2wjkASgFMKcBZ3rYVCOqYK6tasy36fdwN0f9dXs1q7NP6gZ6sn5NiUAtZciLLBYUjaqJPKVqnQuxHHQ-KgFrFqtWiWi2qo9il8utzfW5G254K_00uwPUR6H1Q736Oi8f09d4H4nGDFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086954195</pqid></control><display><type>article</type><title>High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Conner, Abigail A ; Yao, Yuan ; Chan, Sarah W ; Jain, Deepak ; Wong, Suzanne M ; Yim, Evelyn K F ; Rizwan, Muhammad</creator><creatorcontrib>Conner, Abigail A ; Yao, Yuan ; Chan, Sarah W ; Jain, Deepak ; Wong, Suzanne M ; Yim, Evelyn K F ; Rizwan, Muhammad</creatorcontrib><description>The expansion of pluripotent stem cells (PSCs) in vitro remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markers Oct4, Nanog, and Sox2 and the differentiation marker LmnA as well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1 µm pillars (1 µm spacing, square arrangement), 2 µm wells (c-c (x,y) = 4, 4 µm), and 5 µm pillars (c-c (x,y) = 7.5, 7.5 µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.</description><identifier>ISSN: 0957-4484</identifier><identifier>ISSN: 1361-6528</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad6994</identifier><identifier>PMID: 39084233</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>mechanobiology ; pluripotency ; pluripotent stem cell ; stem cell expansion ; topography</subject><ispartof>Nanotechnology, 2024-11, Vol.35 (45), p.455101</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-b6dca1cb67e3064dba22396efac4c40079b6ff002200c560fe4dd7062f3f578a3</cites><orcidid>0000-0001-5179-7636 ; 0000-0001-6192-0036 ; 0000-0001-9812-1801 ; 0000-0002-4557-1523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ad6994/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39084233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conner, Abigail A</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Chan, Sarah W</creatorcontrib><creatorcontrib>Jain, Deepak</creatorcontrib><creatorcontrib>Wong, Suzanne M</creatorcontrib><creatorcontrib>Yim, Evelyn K F</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><title>High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>The expansion of pluripotent stem cells (PSCs) in vitro remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markers Oct4, Nanog, and Sox2 and the differentiation marker LmnA as well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1 µm pillars (1 µm spacing, square arrangement), 2 µm wells (c-c (x,y) = 4, 4 µm), and 5 µm pillars (c-c (x,y) = 7.5, 7.5 µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.</description><subject>mechanobiology</subject><subject>pluripotency</subject><subject>pluripotent stem cell</subject><subject>stem cell expansion</subject><subject>topography</subject><issn>0957-4484</issn><issn>1361-6528</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtr3DAUhUVpaCaT7LsqWnYRJ1cPy9ayhLxgIJtkLWRZGjvYlirJ0Pn3sZl0dlkduHzncPkQ-knghkBd3xImSCFKWt_qVkjJv6HN6fQdbUCWVcF5zc_RRUrvAITUlPxA50xCzSljG6Sf-n1X5C76ed-FOWM96eGQ-oS9w9kHv486dL3RAzazTdj5iHNnsf0X9JR6P63cOMd-sjgMSwaf7ZRxynbExg5DukRnTg_JXn3mFr093L_ePRW7l8fnuz-7wlAic9GI1mhiGlFZBoK3jaaUSWGdNtxwgEo2wjkASgFMKcBZ3rYVCOqYK6tasy36fdwN0f9dXs1q7NP6gZ6sn5NiUAtZciLLBYUjaqJPKVqnQuxHHQ-KgFrFqtWiWi2qo9il8utzfW5G254K_00uwPUR6H1Q736Oi8f09d4H4nGDFw</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Conner, Abigail A</creator><creator>Yao, Yuan</creator><creator>Chan, Sarah W</creator><creator>Jain, Deepak</creator><creator>Wong, Suzanne M</creator><creator>Yim, Evelyn K F</creator><creator>Rizwan, Muhammad</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5179-7636</orcidid><orcidid>https://orcid.org/0000-0001-6192-0036</orcidid><orcidid>https://orcid.org/0000-0001-9812-1801</orcidid><orcidid>https://orcid.org/0000-0002-4557-1523</orcidid></search><sort><creationdate>20241104</creationdate><title>High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells</title><author>Conner, Abigail A ; Yao, Yuan ; Chan, Sarah W ; Jain, Deepak ; Wong, Suzanne M ; Yim, Evelyn K F ; Rizwan, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-b6dca1cb67e3064dba22396efac4c40079b6ff002200c560fe4dd7062f3f578a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>mechanobiology</topic><topic>pluripotency</topic><topic>pluripotent stem cell</topic><topic>stem cell expansion</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conner, Abigail A</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Chan, Sarah W</creatorcontrib><creatorcontrib>Jain, Deepak</creatorcontrib><creatorcontrib>Wong, Suzanne M</creatorcontrib><creatorcontrib>Yim, Evelyn K F</creatorcontrib><creatorcontrib>Rizwan, Muhammad</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conner, Abigail A</au><au>Yao, Yuan</au><au>Chan, Sarah W</au><au>Jain, Deepak</au><au>Wong, Suzanne M</au><au>Yim, Evelyn K F</au><au>Rizwan, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2024-11-04</date><risdate>2024</risdate><volume>35</volume><issue>45</issue><spage>455101</spage><pages>455101-</pages><issn>0957-4484</issn><issn>1361-6528</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The expansion of pluripotent stem cells (PSCs) in vitro remains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markers Oct4, Nanog, and Sox2 and the differentiation marker LmnA as well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1 µm pillars (1 µm spacing, square arrangement), 2 µm wells (c-c (x,y) = 4, 4 µm), and 5 µm pillars (c-c (x,y) = 7.5, 7.5 µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39084233</pmid><doi>10.1088/1361-6528/ad6994</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5179-7636</orcidid><orcidid>https://orcid.org/0000-0001-6192-0036</orcidid><orcidid>https://orcid.org/0000-0001-9812-1801</orcidid><orcidid>https://orcid.org/0000-0002-4557-1523</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2024-11, Vol.35 (45), p.455101 |
issn | 0957-4484 1361-6528 1361-6528 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6528_ad6994 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | mechanobiology pluripotency pluripotent stem cell stem cell expansion topography |
title | High-throughput analysis of topographical cues for the expansion of murine pluripotent stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20analysis%20of%20topographical%20cues%20for%20the%20expansion%20of%20murine%20pluripotent%20stem%20cells&rft.jtitle=Nanotechnology&rft.au=Conner,%20Abigail%20A&rft.date=2024-11-04&rft.volume=35&rft.issue=45&rft.spage=455101&rft.pages=455101-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad6994&rft_dat=%3Cproquest_cross%3E3086954195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086954195&rft_id=info:pmid/39084233&rfr_iscdi=true |