Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals

Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resultin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2023-05, Vol.34 (22), p.225301
Hauptverfasser: Goodwin, Melissa J, Harteveld, Cornelis A M, de Boer, Meint J, Vos, Willem L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 225301
container_title Nanotechnology
container_volume 34
creator Goodwin, Melissa J
Harteveld, Cornelis A M
de Boer, Meint J
Vos, Willem L
description Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resulting nanopores suffered from structural imperfections of the nanopores, such as mask undercut, uneven and large scallops, depth dependent pore radii and tapering. Therefore, our present focus is to realize nanopores that have as cylindrical as possible shapes, in order to obtain a better comparison of nanophotonic observations with theory and simulations. To this end in our 2-step Bosch process we have improved the mask undercut, the uneven scallops, pore widening and positive tapering by optimizing a plethora of parameters such as the etch step time, capacitively coupled plasma (ion energy) and pressure. To add further degrees of control, we implemented a 3-step DREM (deposit, remove, etch, multistep) process. Optimization of the etching process results in cylindrical nanopores with a diameter in the range between 280 and 500 nm and a depth around 7 m, corresponding to high depth-to-diameter aspect ratios between 14 and 25, that are very well suited for the realization of silicon nanophotonic structures.
doi_str_mv 10.1088/1361-6528/acc034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_acc034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788801959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-bd38a33c26521d758de9829e8cd134bee7d0ac6043199f92a4e75fb16d2bb91e3</originalsourceid><addsrcrecordid>eNp1kEtLJDEQgMOyouPj7mnJcRdsTSXp7uQo7hOEPajnkE6q10hP0pv0CPPvN8OoJxcKCoqvXh8h58AugSl1BaKDpmu5urLOMSE_kNVb6SNZMd32jZRKHpHjUp4YA1AcDsmR6DRXwPmK3H1FnGlG65bwjDSkSHFxjyH-oWmkbjuF6HNwdqLRxjSnjIWGSEuYgqvsmDKdH9OSYnDU5W1Z7FROycFYE5695BPy8P3b_c3P5vb3j18317eNk8CXZvBCWSEcr9eC71vlUSuuUTkPQg6IvWfWdUwK0HrU3Ers23GAzvNh0IDihHzez51z-rvBsph1KA6nyUZMm2J4r5RioFtdUbZHXU6lZBzNnMPa5q0BZnYqzc6b2Xkze5W15dPL9M2wRv_W8OquAl_2QEizeUqbHOuzZqfJCGk4r9EKBmb2Y2Uv3mH_u_sf6cOLag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788801959</pqid></control><display><type>article</type><title>Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Goodwin, Melissa J ; Harteveld, Cornelis A M ; de Boer, Meint J ; Vos, Willem L</creator><creatorcontrib>Goodwin, Melissa J ; Harteveld, Cornelis A M ; de Boer, Meint J ; Vos, Willem L</creatorcontrib><description>Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resulting nanopores suffered from structural imperfections of the nanopores, such as mask undercut, uneven and large scallops, depth dependent pore radii and tapering. Therefore, our present focus is to realize nanopores that have as cylindrical as possible shapes, in order to obtain a better comparison of nanophotonic observations with theory and simulations. To this end in our 2-step Bosch process we have improved the mask undercut, the uneven scallops, pore widening and positive tapering by optimizing a plethora of parameters such as the etch step time, capacitively coupled plasma (ion energy) and pressure. To add further degrees of control, we implemented a 3-step DREM (deposit, remove, etch, multistep) process. Optimization of the etching process results in cylindrical nanopores with a diameter in the range between 280 and 500 nm and a depth around 7 m, corresponding to high depth-to-diameter aspect ratios between 14 and 25, that are very well suited for the realization of silicon nanophotonic structures.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/acc034</identifier><identifier>PMID: 36928122</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>photonic crystals ; reactive ion etching ; silicon nanophotonics</subject><ispartof>Nanotechnology, 2023-05, Vol.34 (22), p.225301</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-bd38a33c26521d758de9829e8cd134bee7d0ac6043199f92a4e75fb16d2bb91e3</citedby><cites>FETCH-LOGICAL-c412t-bd38a33c26521d758de9829e8cd134bee7d0ac6043199f92a4e75fb16d2bb91e3</cites><orcidid>0000-0003-3066-859X ; 0000-0002-2803-9789 ; 0000-0002-6108-7985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/acc034/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,53825,53872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36928122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodwin, Melissa J</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>de Boer, Meint J</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><title>Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resulting nanopores suffered from structural imperfections of the nanopores, such as mask undercut, uneven and large scallops, depth dependent pore radii and tapering. Therefore, our present focus is to realize nanopores that have as cylindrical as possible shapes, in order to obtain a better comparison of nanophotonic observations with theory and simulations. To this end in our 2-step Bosch process we have improved the mask undercut, the uneven scallops, pore widening and positive tapering by optimizing a plethora of parameters such as the etch step time, capacitively coupled plasma (ion energy) and pressure. To add further degrees of control, we implemented a 3-step DREM (deposit, remove, etch, multistep) process. Optimization of the etching process results in cylindrical nanopores with a diameter in the range between 280 and 500 nm and a depth around 7 m, corresponding to high depth-to-diameter aspect ratios between 14 and 25, that are very well suited for the realization of silicon nanophotonic structures.</description><subject>photonic crystals</subject><subject>reactive ion etching</subject><subject>silicon nanophotonics</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtLJDEQgMOyouPj7mnJcRdsTSXp7uQo7hOEPajnkE6q10hP0pv0CPPvN8OoJxcKCoqvXh8h58AugSl1BaKDpmu5urLOMSE_kNVb6SNZMd32jZRKHpHjUp4YA1AcDsmR6DRXwPmK3H1FnGlG65bwjDSkSHFxjyH-oWmkbjuF6HNwdqLRxjSnjIWGSEuYgqvsmDKdH9OSYnDU5W1Z7FROycFYE5695BPy8P3b_c3P5vb3j18317eNk8CXZvBCWSEcr9eC71vlUSuuUTkPQg6IvWfWdUwK0HrU3Ers23GAzvNh0IDihHzez51z-rvBsph1KA6nyUZMm2J4r5RioFtdUbZHXU6lZBzNnMPa5q0BZnYqzc6b2Xkze5W15dPL9M2wRv_W8OquAl_2QEizeUqbHOuzZqfJCGk4r9EKBmb2Y2Uv3mH_u_sf6cOLag</recordid><startdate>20230528</startdate><enddate>20230528</enddate><creator>Goodwin, Melissa J</creator><creator>Harteveld, Cornelis A M</creator><creator>de Boer, Meint J</creator><creator>Vos, Willem L</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid><orcidid>https://orcid.org/0000-0002-2803-9789</orcidid><orcidid>https://orcid.org/0000-0002-6108-7985</orcidid></search><sort><creationdate>20230528</creationdate><title>Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals</title><author>Goodwin, Melissa J ; Harteveld, Cornelis A M ; de Boer, Meint J ; Vos, Willem L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-bd38a33c26521d758de9829e8cd134bee7d0ac6043199f92a4e75fb16d2bb91e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>photonic crystals</topic><topic>reactive ion etching</topic><topic>silicon nanophotonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodwin, Melissa J</creatorcontrib><creatorcontrib>Harteveld, Cornelis A M</creatorcontrib><creatorcontrib>de Boer, Meint J</creatorcontrib><creatorcontrib>Vos, Willem L</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodwin, Melissa J</au><au>Harteveld, Cornelis A M</au><au>de Boer, Meint J</au><au>Vos, Willem L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2023-05-28</date><risdate>2023</risdate><volume>34</volume><issue>22</issue><spage>225301</spage><pages>225301-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Periodic arrays of deep nanopores etched in silicon by deep reactive ion etching are desirable structures for photonic crystals and other nanostructures for silicon nanophotonics. Previous studies focused on realizing as deep as possible nanopores with as high as possible aspect ratios. The resulting nanopores suffered from structural imperfections of the nanopores, such as mask undercut, uneven and large scallops, depth dependent pore radii and tapering. Therefore, our present focus is to realize nanopores that have as cylindrical as possible shapes, in order to obtain a better comparison of nanophotonic observations with theory and simulations. To this end in our 2-step Bosch process we have improved the mask undercut, the uneven scallops, pore widening and positive tapering by optimizing a plethora of parameters such as the etch step time, capacitively coupled plasma (ion energy) and pressure. To add further degrees of control, we implemented a 3-step DREM (deposit, remove, etch, multistep) process. Optimization of the etching process results in cylindrical nanopores with a diameter in the range between 280 and 500 nm and a depth around 7 m, corresponding to high depth-to-diameter aspect ratios between 14 and 25, that are very well suited for the realization of silicon nanophotonic structures.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36928122</pmid><doi>10.1088/1361-6528/acc034</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3066-859X</orcidid><orcidid>https://orcid.org/0000-0002-2803-9789</orcidid><orcidid>https://orcid.org/0000-0002-6108-7985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2023-05, Vol.34 (22), p.225301
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_acc034
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects photonic crystals
reactive ion etching
silicon nanophotonics
title Deep reactive ion etching of cylindrical nanopores in silicon for photonic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20reactive%20ion%20etching%20of%20cylindrical%20nanopores%20in%20silicon%20for%20photonic%20crystals&rft.jtitle=Nanotechnology&rft.au=Goodwin,%20Melissa%20J&rft.date=2023-05-28&rft.volume=34&rft.issue=22&rft.spage=225301&rft.pages=225301-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/acc034&rft_dat=%3Cproquest_cross%3E2788801959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788801959&rft_id=info:pmid/36928122&rfr_iscdi=true