Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires

We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2022-12, Vol.33 (49), p.495001
Hauptverfasser: Herasymova, Dariia O, Dukhopelnykov, Sergii V, Natarov, Denys M, Zinenko, Tatiana L, Lucido, Mario, Nosich, Alexander I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 49
container_start_page 495001
container_title Nanotechnology
container_volume 33
creator Herasymova, Dariia O
Dukhopelnykov, Sergii V
Natarov, Denys M
Zinenko, Tatiana L
Lucido, Mario
Nosich, Alexander I
description We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10 μ m, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.
doi_str_mv 10.1088/1361-6528/ac8e0c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ac8e0c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709018702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-511f46b0500efc247f694386cadb334132b56441ab0ca1cd6f1f8d962b3e69153</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoJs09x51bCDuaixZKx9DSNJCoJf0LMb6yCrYkiPZDf0P-dHRsqWnUhBII555mXkI-QzsKzCltsAlNLJr1RaNcsx8IJu_Xydkw_pu1wihxEdyVsozYwCqhQ15e9xnV_ZptNSkaMMSUizUp0yXjLH8crngSKdkXaHJ02WNOIyOziOWKcVgaMSYalE5WvY4O0uxvkJ8qhRGS5fXEOlTxnnvomtMqomVMSGbdcRMX1aMyzrR11DH-EROPY7FXfy5z8nPu9vHm2_Nw4_77zfXD43h0C9NB-CFHFjHmPOmFTsve8GVNGgHzgXwduikEIADMwjGSg9e2V62A3eyh46fky_H3Dmnl9WVRU-hGDeOGF1ai253rGegdqytKDuiJqdSsvN6zmHC_FsD0wfx-mBZHyzro_jacnVsCWnWz2nNse7yP_zyH_hBq-Zci76euijo2Xr-Dui3lhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709018702</pqid></control><display><type>article</type><title>Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Herasymova, Dariia O ; Dukhopelnykov, Sergii V ; Natarov, Denys M ; Zinenko, Tatiana L ; Lucido, Mario ; Nosich, Alexander I</creator><creatorcontrib>Herasymova, Dariia O ; Dukhopelnykov, Sergii V ; Natarov, Denys M ; Zinenko, Tatiana L ; Lucido, Mario ; Nosich, Alexander I</creatorcontrib><description>We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10 μ m, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ac8e0c</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>eigenvalue problem ; graphene ; lasing ; plasmon modes ; quantum wire</subject><ispartof>Nanotechnology, 2022-12, Vol.33 (49), p.495001</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-511f46b0500efc247f694386cadb334132b56441ab0ca1cd6f1f8d962b3e69153</citedby><cites>FETCH-LOGICAL-c319t-511f46b0500efc247f694386cadb334132b56441ab0ca1cd6f1f8d962b3e69153</cites><orcidid>0000-0001-8661-5601 ; 0000-0003-4170-9211 ; 0000-0002-3446-8168 ; 0000-0002-7218-1344 ; 0000-0001-6569-1226 ; 0000-0002-0639-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ac8e0c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids></links><search><creatorcontrib>Herasymova, Dariia O</creatorcontrib><creatorcontrib>Dukhopelnykov, Sergii V</creatorcontrib><creatorcontrib>Natarov, Denys M</creatorcontrib><creatorcontrib>Zinenko, Tatiana L</creatorcontrib><creatorcontrib>Lucido, Mario</creatorcontrib><creatorcontrib>Nosich, Alexander I</creatorcontrib><title>Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10 μ m, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.</description><subject>eigenvalue problem</subject><subject>graphene</subject><subject>lasing</subject><subject>plasmon modes</subject><subject>quantum wire</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kE1r3DAQhkVJoJs09x51bCDuaixZKx9DSNJCoJf0LMb6yCrYkiPZDf0P-dHRsqWnUhBII555mXkI-QzsKzCltsAlNLJr1RaNcsx8IJu_Xydkw_pu1wihxEdyVsozYwCqhQ15e9xnV_ZptNSkaMMSUizUp0yXjLH8crngSKdkXaHJ02WNOIyOziOWKcVgaMSYalE5WvY4O0uxvkJ8qhRGS5fXEOlTxnnvomtMqomVMSGbdcRMX1aMyzrR11DH-EROPY7FXfy5z8nPu9vHm2_Nw4_77zfXD43h0C9NB-CFHFjHmPOmFTsve8GVNGgHzgXwduikEIADMwjGSg9e2V62A3eyh46fky_H3Dmnl9WVRU-hGDeOGF1ai253rGegdqytKDuiJqdSsvN6zmHC_FsD0wfx-mBZHyzro_jacnVsCWnWz2nNse7yP_zyH_hBq-Zci76euijo2Xr-Dui3lhs</recordid><startdate>20221203</startdate><enddate>20221203</enddate><creator>Herasymova, Dariia O</creator><creator>Dukhopelnykov, Sergii V</creator><creator>Natarov, Denys M</creator><creator>Zinenko, Tatiana L</creator><creator>Lucido, Mario</creator><creator>Nosich, Alexander I</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8661-5601</orcidid><orcidid>https://orcid.org/0000-0003-4170-9211</orcidid><orcidid>https://orcid.org/0000-0002-3446-8168</orcidid><orcidid>https://orcid.org/0000-0002-7218-1344</orcidid><orcidid>https://orcid.org/0000-0001-6569-1226</orcidid><orcidid>https://orcid.org/0000-0002-0639-988X</orcidid></search><sort><creationdate>20221203</creationdate><title>Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires</title><author>Herasymova, Dariia O ; Dukhopelnykov, Sergii V ; Natarov, Denys M ; Zinenko, Tatiana L ; Lucido, Mario ; Nosich, Alexander I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-511f46b0500efc247f694386cadb334132b56441ab0ca1cd6f1f8d962b3e69153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>eigenvalue problem</topic><topic>graphene</topic><topic>lasing</topic><topic>plasmon modes</topic><topic>quantum wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herasymova, Dariia O</creatorcontrib><creatorcontrib>Dukhopelnykov, Sergii V</creatorcontrib><creatorcontrib>Natarov, Denys M</creatorcontrib><creatorcontrib>Zinenko, Tatiana L</creatorcontrib><creatorcontrib>Lucido, Mario</creatorcontrib><creatorcontrib>Nosich, Alexander I</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herasymova, Dariia O</au><au>Dukhopelnykov, Sergii V</au><au>Natarov, Denys M</au><au>Zinenko, Tatiana L</au><au>Lucido, Mario</au><au>Nosich, Alexander I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2022-12-03</date><risdate>2022</risdate><volume>33</volume><issue>49</issue><spage>495001</spage><pages>495001-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>We implement the lasing eigenvalue problem (LEP) approach to study the electromagnetic field in the presence of a circular quantum wire (QW) made of a gain material and wrapped in graphene cover and a dimer of two identical graphene-covered QWs, at the threshold of stationary emission. LEP delivers the mode-specific eigenvalue pairs, namely the frequencies and the threshold values of the QW gain index for the plasmon and the wire modes of such nanolasers. In our analysis, we use quantum Kubo formalism for the graphene conductivity and classical Maxwell boundary-value problem for the field functions. The technique involves the resistive boundary conditions, the separation of variables in the local coordinates, and, for the dimer, the addition theorem for the cylindrical functions. For single-wire plasmonic laser, we derive approximate engineering expressions for the lasing frequencies and threshold values of the gain index that complement the full-wave computations. For the dimer, we derive separate determinantal equations for four different classes of symmetry of the lasing supermodes and solve them numerically. Our investigation of the mode frequencies and thresholds versus the graphene and QW parameters shows that plasmon modes or, for the dimer, plasmon supermodes have lower frequencies and thresholds than the wire modes provided that the QW radius is smaller than 10 μ m, however in thicker wires they are comparable. Only the plasmon-mode characteristics are well-tunable using the graphene chemical potential. In the dimer, all lasing supermodes form closely located quartets, however, they quickly approach the single-wire case if the inter-wire separation becomes comparable to the radius. These results open a way for building essentially single-mode plasmonic nanolasers and their arrays and suggest certain engineering rules for their design.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ac8e0c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8661-5601</orcidid><orcidid>https://orcid.org/0000-0003-4170-9211</orcidid><orcidid>https://orcid.org/0000-0002-3446-8168</orcidid><orcidid>https://orcid.org/0000-0002-7218-1344</orcidid><orcidid>https://orcid.org/0000-0001-6569-1226</orcidid><orcidid>https://orcid.org/0000-0002-0639-988X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2022-12, Vol.33 (49), p.495001
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ac8e0c
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects eigenvalue problem
graphene
lasing
plasmon modes
quantum wire
title Threshold conditions for transversal modes of tunable plasmonic nanolasers shaped as single and twin graphene-covered circular quantum wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20conditions%20for%20transversal%20modes%20of%20tunable%20plasmonic%20nanolasers%20shaped%20as%20single%20and%20twin%20graphene-covered%20circular%20quantum%20wires&rft.jtitle=Nanotechnology&rft.au=Herasymova,%20Dariia%20O&rft.date=2022-12-03&rft.volume=33&rft.issue=49&rft.spage=495001&rft.pages=495001-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ac8e0c&rft_dat=%3Cproquest_cross%3E2709018702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709018702&rft_id=info:pmid/&rfr_iscdi=true