Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires

The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension–compression asymmetry of Al x FeNiCrCu HEA NWs ( x  = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2022-10, Vol.33 (41), p.415703
Hauptverfasser: Niu, Yihan, Zhao, Dan, Zhu, Bo, Wang, Shunbo, Wang, Zhaoxin, Zhao, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page 415703
container_title Nanotechnology
container_volume 33
creator Niu, Yihan
Zhao, Dan
Zhu, Bo
Wang, Shunbo
Wang, Zhaoxin
Zhao, Hongwei
description The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension–compression asymmetry of Al x FeNiCrCu HEA NWs ( x  = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics simulations, focusing on the influences of the NW diameter, the Al content, the crystalline orientation, and the temperature, which are significant for applying HEAs in nanotechnology. The increased NW diameter improves the energy required for stacking faults nucleating, thus strengthening AlFeNiCrCu HEA NWs. A few twins during stretching weaken the strengthening effects, thereby decreasing the tension–compression asymmetry. The increased Al content raises the tension–compression asymmetry by promoting the face-centered cubic to body-centered cubic phase transition during stretching. The tension along the [001] crystalline orientation is stronger than the compression, while the [110] and [111] crystalline orientations are entirely the opposite, and the tension–compression asymmetry along the [111] crystalline orientation is the minimum. The diversities in the tension–compression asymmetry depend on the deformation mechanism. Compressing along the [001] crystalline orientation and stretching along the [110] crystalline orientation induces twinning. Deformation along the [111] crystalline orientation only leaves stacking faults in the NWs. Therefore, the tension and compression along the [111] crystalline orientation exhibit minimal asymmetry. As the temperature rises, the tension–compression asymmetry along the [001] and [111] crystalline orientations increases, while that along the [110] crystalline orientation decreases.
doi_str_mv 10.1088/1361-6528/ac74ce
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ac74ce</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>nanoac74ce</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3ab05b9e2152d198bae91128239be150ad840011f5ba4696f0a4ef9fabf99b333</originalsourceid><addsrcrecordid>eNp1ULtOwzAUtRBIlMLO6JFKJLVjJ7UHhiqigFTBArPlpHbrKokjO4VmY-EL-IF-Sz-FLyFRERNIV_elc4_OPQBcYhRixNgYkwQHSRyxscwnNFdHYPC7OgYDxONJQCmjp-DM-zVCGLMID8DHtLGlyaGpXpVvzFI2xlYe2go2KwUbVflu_nr_zG1ZO-X7CUrflqVqXAuthtMCbuFMPZrUpRt4td3vbvY7FMbXEIeoT10XhWgEV2a5ClTVOFu3UBaFbWElK_tmOtpzcKJl4dXFTx2Cl9ntc3ofzJ_uHtLpPMgjSpuAyAzFGVcRjqMF5iyTimMcsYjwTOEYyQWj_Wc6ziRNeKKRpEpzLTPNeUYIGQJ04M2d9d4pLWpnSulagZHobRS9Z6L3TBxs7E5GhxNja7G2G1d1AkWvXBAiKO4iniAi6oXusNd_YP-l_ga-hIN3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Niu, Yihan ; Zhao, Dan ; Zhu, Bo ; Wang, Shunbo ; Wang, Zhaoxin ; Zhao, Hongwei</creator><creatorcontrib>Niu, Yihan ; Zhao, Dan ; Zhu, Bo ; Wang, Shunbo ; Wang, Zhaoxin ; Zhao, Hongwei</creatorcontrib><description>The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension–compression asymmetry of Al x FeNiCrCu HEA NWs ( x  = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics simulations, focusing on the influences of the NW diameter, the Al content, the crystalline orientation, and the temperature, which are significant for applying HEAs in nanotechnology. The increased NW diameter improves the energy required for stacking faults nucleating, thus strengthening AlFeNiCrCu HEA NWs. A few twins during stretching weaken the strengthening effects, thereby decreasing the tension–compression asymmetry. The increased Al content raises the tension–compression asymmetry by promoting the face-centered cubic to body-centered cubic phase transition during stretching. The tension along the [001] crystalline orientation is stronger than the compression, while the [110] and [111] crystalline orientations are entirely the opposite, and the tension–compression asymmetry along the [111] crystalline orientation is the minimum. The diversities in the tension–compression asymmetry depend on the deformation mechanism. Compressing along the [001] crystalline orientation and stretching along the [110] crystalline orientation induces twinning. Deformation along the [111] crystalline orientation only leaves stacking faults in the NWs. Therefore, the tension and compression along the [111] crystalline orientation exhibit minimal asymmetry. As the temperature rises, the tension–compression asymmetry along the [001] and [111] crystalline orientations increases, while that along the [110] crystalline orientation decreases.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ac74ce</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic simulation ; high-entropy alloy ; nanowire ; tension–compression asymmetry</subject><ispartof>Nanotechnology, 2022-10, Vol.33 (41), p.415703</ispartof><rights>2022 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c244t-3ab05b9e2152d198bae91128239be150ad840011f5ba4696f0a4ef9fabf99b333</citedby><cites>FETCH-LOGICAL-c244t-3ab05b9e2152d198bae91128239be150ad840011f5ba4696f0a4ef9fabf99b333</cites><orcidid>0000-0003-4746-389X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ac74ce/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27926,27927,53848,53895</link.rule.ids></links><search><creatorcontrib>Niu, Yihan</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Wang, Shunbo</creatorcontrib><creatorcontrib>Wang, Zhaoxin</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><title>Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension–compression asymmetry of Al x FeNiCrCu HEA NWs ( x  = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics simulations, focusing on the influences of the NW diameter, the Al content, the crystalline orientation, and the temperature, which are significant for applying HEAs in nanotechnology. The increased NW diameter improves the energy required for stacking faults nucleating, thus strengthening AlFeNiCrCu HEA NWs. A few twins during stretching weaken the strengthening effects, thereby decreasing the tension–compression asymmetry. The increased Al content raises the tension–compression asymmetry by promoting the face-centered cubic to body-centered cubic phase transition during stretching. The tension along the [001] crystalline orientation is stronger than the compression, while the [110] and [111] crystalline orientations are entirely the opposite, and the tension–compression asymmetry along the [111] crystalline orientation is the minimum. The diversities in the tension–compression asymmetry depend on the deformation mechanism. Compressing along the [001] crystalline orientation and stretching along the [110] crystalline orientation induces twinning. Deformation along the [111] crystalline orientation only leaves stacking faults in the NWs. Therefore, the tension and compression along the [111] crystalline orientation exhibit minimal asymmetry. As the temperature rises, the tension–compression asymmetry along the [001] and [111] crystalline orientations increases, while that along the [110] crystalline orientation decreases.</description><subject>atomic simulation</subject><subject>high-entropy alloy</subject><subject>nanowire</subject><subject>tension–compression asymmetry</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ULtOwzAUtRBIlMLO6JFKJLVjJ7UHhiqigFTBArPlpHbrKokjO4VmY-EL-IF-Sz-FLyFRERNIV_elc4_OPQBcYhRixNgYkwQHSRyxscwnNFdHYPC7OgYDxONJQCmjp-DM-zVCGLMID8DHtLGlyaGpXpVvzFI2xlYe2go2KwUbVflu_nr_zG1ZO-X7CUrflqVqXAuthtMCbuFMPZrUpRt4td3vbvY7FMbXEIeoT10XhWgEV2a5ClTVOFu3UBaFbWElK_tmOtpzcKJl4dXFTx2Cl9ntc3ofzJ_uHtLpPMgjSpuAyAzFGVcRjqMF5iyTimMcsYjwTOEYyQWj_Wc6ziRNeKKRpEpzLTPNeUYIGQJ04M2d9d4pLWpnSulagZHobRS9Z6L3TBxs7E5GhxNja7G2G1d1AkWvXBAiKO4iniAi6oXusNd_YP-l_ga-hIN3</recordid><startdate>20221008</startdate><enddate>20221008</enddate><creator>Niu, Yihan</creator><creator>Zhao, Dan</creator><creator>Zhu, Bo</creator><creator>Wang, Shunbo</creator><creator>Wang, Zhaoxin</creator><creator>Zhao, Hongwei</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4746-389X</orcidid></search><sort><creationdate>20221008</creationdate><title>Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires</title><author>Niu, Yihan ; Zhao, Dan ; Zhu, Bo ; Wang, Shunbo ; Wang, Zhaoxin ; Zhao, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3ab05b9e2152d198bae91128239be150ad840011f5ba4696f0a4ef9fabf99b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>atomic simulation</topic><topic>high-entropy alloy</topic><topic>nanowire</topic><topic>tension–compression asymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yihan</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Zhu, Bo</creatorcontrib><creatorcontrib>Wang, Shunbo</creatorcontrib><creatorcontrib>Wang, Zhaoxin</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><collection>CrossRef</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yihan</au><au>Zhao, Dan</au><au>Zhu, Bo</au><au>Wang, Shunbo</au><au>Wang, Zhaoxin</au><au>Zhao, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2022-10-08</date><risdate>2022</risdate><volume>33</volume><issue>41</issue><spage>415703</spage><pages>415703-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>The tension and compression of high-entropy alloy (HEA) nanowires (NWs) are remarkably asymmetric, but the micro mechanism is still unclear. In this research, the tension–compression asymmetry of Al x FeNiCrCu HEA NWs ( x  = 0.5, 1.0, 1.5, 2.0) was quantitatively characterized via molecular dynamics simulations, focusing on the influences of the NW diameter, the Al content, the crystalline orientation, and the temperature, which are significant for applying HEAs in nanotechnology. The increased NW diameter improves the energy required for stacking faults nucleating, thus strengthening AlFeNiCrCu HEA NWs. A few twins during stretching weaken the strengthening effects, thereby decreasing the tension–compression asymmetry. The increased Al content raises the tension–compression asymmetry by promoting the face-centered cubic to body-centered cubic phase transition during stretching. The tension along the [001] crystalline orientation is stronger than the compression, while the [110] and [111] crystalline orientations are entirely the opposite, and the tension–compression asymmetry along the [111] crystalline orientation is the minimum. The diversities in the tension–compression asymmetry depend on the deformation mechanism. Compressing along the [001] crystalline orientation and stretching along the [110] crystalline orientation induces twinning. Deformation along the [111] crystalline orientation only leaves stacking faults in the NWs. Therefore, the tension and compression along the [111] crystalline orientation exhibit minimal asymmetry. As the temperature rises, the tension–compression asymmetry along the [001] and [111] crystalline orientations increases, while that along the [110] crystalline orientation decreases.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/ac74ce</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4746-389X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2022-10, Vol.33 (41), p.415703
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ac74ce
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atomic simulation
high-entropy alloy
nanowire
tension–compression asymmetry
title Atomic investigations on the tension–compression asymmetry of Al x FeNiCrCu (x = 0.5, 1.0, 1.5, 2.0) high-entropy alloy nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20investigations%20on%20the%20tension%E2%80%93compression%20asymmetry%20of%20Al%20x%20FeNiCrCu%20(x%C2%A0=%C2%A00.5,%201.0,%201.5,%202.0)%20high-entropy%20alloy%20nanowires&rft.jtitle=Nanotechnology&rft.au=Niu,%20Yihan&rft.date=2022-10-08&rft.volume=33&rft.issue=41&rft.spage=415703&rft.pages=415703-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ac74ce&rft_dat=%3Ciop_cross%3Enanoac74ce%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true