Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing

Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2022-06, Vol.33 (25), p.255201
Hauptverfasser: Shvetsov, Boris S, Minnekhanov, Anton A, Emelyanov, Andrey V, Ilyasov, Aleksandr I, Grishchenko, Yulia V, Zanaveskin, Maxim L, Nesmelov, Aleksandr A, Streltsov, Dmitry R, Patsaev, Timofey D, Vasiliev, Alexander L, Rylkov, Vladimir V, Demin, Vyacheslav A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 25
container_start_page 255201
container_title Nanotechnology
container_volume 33
creator Shvetsov, Boris S
Minnekhanov, Anton A
Emelyanov, Andrey V
Ilyasov, Aleksandr I
Grishchenko, Yulia V
Zanaveskin, Maxim L
Nesmelov, Aleksandr A
Streltsov, Dmitry R
Patsaev, Timofey D
Vasiliev, Alexander L
Rylkov, Vladimir V
Demin, Vyacheslav A
description Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly- -xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (
doi_str_mv 10.1088/1361-6528/ac5cfe
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ac5cfe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638725839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-99b720a92c90f0669eab71e60beedd07cb1d270813d88cc28ab4b3a4e4c9eb093</originalsourceid><addsrcrecordid>eNp9kMtLxDAQh4Mo7vq4e5IcFazm0UdyFPEFgh70HJJ06mZpm5o0iv-9XXf1JMLAwMw3P5gPoSNKzikR4oLykmZlwcSFtoVtYAvNf0fbaE5kUWV5LvIZ2otxSQilgtFdNOMFq8pSyDlqn3T4bKGHzOgINe6gCy6O7h2wDT5GowOOY0h2TAEi_nDjAnepHV0L79Diabah47SyC9e_4sYH3EMKvvNhWDiLre-GNE6rA7TT6DbC4abvo5eb6-eru-zh8fb-6vIhs7wiYyalqRjRkllJGlKWErSpKJTEANQ1qayhNauIoLwWwlomtMkN1znkVoIhku-jk3XuEPxbgjiqzkULbat78CkqVnJRsULwFUrW6Pe3ARo1BNdNThQlauVYrYSqlVC1djydHG_Sk-mg_j34kToBZ2vA-UEtfQr99Ox_ead_4L3uveJcsWKqghGqhrrhX5r7mEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638725839</pqid></control><display><type>article</type><title>Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shvetsov, Boris S ; Minnekhanov, Anton A ; Emelyanov, Andrey V ; Ilyasov, Aleksandr I ; Grishchenko, Yulia V ; Zanaveskin, Maxim L ; Nesmelov, Aleksandr A ; Streltsov, Dmitry R ; Patsaev, Timofey D ; Vasiliev, Alexander L ; Rylkov, Vladimir V ; Demin, Vyacheslav A</creator><creatorcontrib>Shvetsov, Boris S ; Minnekhanov, Anton A ; Emelyanov, Andrey V ; Ilyasov, Aleksandr I ; Grishchenko, Yulia V ; Zanaveskin, Maxim L ; Nesmelov, Aleksandr A ; Streltsov, Dmitry R ; Patsaev, Timofey D ; Vasiliev, Alexander L ; Rylkov, Vladimir V ; Demin, Vyacheslav A</creatorcontrib><description>Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly- -xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (&lt;2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ac5cfe</identifier><identifier>PMID: 35276689</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>crossbar structure ; memristor ; neuromorphic network ; parylene ; resistive switching</subject><ispartof>Nanotechnology, 2022-06, Vol.33 (25), p.255201</ispartof><rights>2022 IOP Publishing Ltd</rights><rights>2022 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-99b720a92c90f0669eab71e60beedd07cb1d270813d88cc28ab4b3a4e4c9eb093</citedby><cites>FETCH-LOGICAL-c370t-99b720a92c90f0669eab71e60beedd07cb1d270813d88cc28ab4b3a4e4c9eb093</cites><orcidid>0000-0002-7685-8463 ; 0000-0001-5393-0285 ; 0000-0001-7884-4180 ; 0000-0002-5660-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ac5cfe/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35276689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shvetsov, Boris S</creatorcontrib><creatorcontrib>Minnekhanov, Anton A</creatorcontrib><creatorcontrib>Emelyanov, Andrey V</creatorcontrib><creatorcontrib>Ilyasov, Aleksandr I</creatorcontrib><creatorcontrib>Grishchenko, Yulia V</creatorcontrib><creatorcontrib>Zanaveskin, Maxim L</creatorcontrib><creatorcontrib>Nesmelov, Aleksandr A</creatorcontrib><creatorcontrib>Streltsov, Dmitry R</creatorcontrib><creatorcontrib>Patsaev, Timofey D</creatorcontrib><creatorcontrib>Vasiliev, Alexander L</creatorcontrib><creatorcontrib>Rylkov, Vladimir V</creatorcontrib><creatorcontrib>Demin, Vyacheslav A</creatorcontrib><title>Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly- -xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (&lt;2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.</description><subject>crossbar structure</subject><subject>memristor</subject><subject>neuromorphic network</subject><subject>parylene</subject><subject>resistive switching</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLxDAQh4Mo7vq4e5IcFazm0UdyFPEFgh70HJJ06mZpm5o0iv-9XXf1JMLAwMw3P5gPoSNKzikR4oLykmZlwcSFtoVtYAvNf0fbaE5kUWV5LvIZ2otxSQilgtFdNOMFq8pSyDlqn3T4bKGHzOgINe6gCy6O7h2wDT5GowOOY0h2TAEi_nDjAnepHV0L79Diabah47SyC9e_4sYH3EMKvvNhWDiLre-GNE6rA7TT6DbC4abvo5eb6-eru-zh8fb-6vIhs7wiYyalqRjRkllJGlKWErSpKJTEANQ1qayhNauIoLwWwlomtMkN1znkVoIhku-jk3XuEPxbgjiqzkULbat78CkqVnJRsULwFUrW6Pe3ARo1BNdNThQlauVYrYSqlVC1djydHG_Sk-mg_j34kToBZ2vA-UEtfQr99Ox_ead_4L3uveJcsWKqghGqhrrhX5r7mEw</recordid><startdate>20220618</startdate><enddate>20220618</enddate><creator>Shvetsov, Boris S</creator><creator>Minnekhanov, Anton A</creator><creator>Emelyanov, Andrey V</creator><creator>Ilyasov, Aleksandr I</creator><creator>Grishchenko, Yulia V</creator><creator>Zanaveskin, Maxim L</creator><creator>Nesmelov, Aleksandr A</creator><creator>Streltsov, Dmitry R</creator><creator>Patsaev, Timofey D</creator><creator>Vasiliev, Alexander L</creator><creator>Rylkov, Vladimir V</creator><creator>Demin, Vyacheslav A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7685-8463</orcidid><orcidid>https://orcid.org/0000-0001-5393-0285</orcidid><orcidid>https://orcid.org/0000-0001-7884-4180</orcidid><orcidid>https://orcid.org/0000-0002-5660-778X</orcidid></search><sort><creationdate>20220618</creationdate><title>Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing</title><author>Shvetsov, Boris S ; Minnekhanov, Anton A ; Emelyanov, Andrey V ; Ilyasov, Aleksandr I ; Grishchenko, Yulia V ; Zanaveskin, Maxim L ; Nesmelov, Aleksandr A ; Streltsov, Dmitry R ; Patsaev, Timofey D ; Vasiliev, Alexander L ; Rylkov, Vladimir V ; Demin, Vyacheslav A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-99b720a92c90f0669eab71e60beedd07cb1d270813d88cc28ab4b3a4e4c9eb093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>crossbar structure</topic><topic>memristor</topic><topic>neuromorphic network</topic><topic>parylene</topic><topic>resistive switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shvetsov, Boris S</creatorcontrib><creatorcontrib>Minnekhanov, Anton A</creatorcontrib><creatorcontrib>Emelyanov, Andrey V</creatorcontrib><creatorcontrib>Ilyasov, Aleksandr I</creatorcontrib><creatorcontrib>Grishchenko, Yulia V</creatorcontrib><creatorcontrib>Zanaveskin, Maxim L</creatorcontrib><creatorcontrib>Nesmelov, Aleksandr A</creatorcontrib><creatorcontrib>Streltsov, Dmitry R</creatorcontrib><creatorcontrib>Patsaev, Timofey D</creatorcontrib><creatorcontrib>Vasiliev, Alexander L</creatorcontrib><creatorcontrib>Rylkov, Vladimir V</creatorcontrib><creatorcontrib>Demin, Vyacheslav A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shvetsov, Boris S</au><au>Minnekhanov, Anton A</au><au>Emelyanov, Andrey V</au><au>Ilyasov, Aleksandr I</au><au>Grishchenko, Yulia V</au><au>Zanaveskin, Maxim L</au><au>Nesmelov, Aleksandr A</au><au>Streltsov, Dmitry R</au><au>Patsaev, Timofey D</au><au>Vasiliev, Alexander L</au><au>Rylkov, Vladimir V</au><au>Demin, Vyacheslav A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2022-06-18</date><risdate>2022</risdate><volume>33</volume><issue>25</issue><spage>255201</spage><pages>255201-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Currently, there is growing interest in wearable and biocompatible smart computing and information processing systems that are safe for the human body. Memristive devices are promising for solving such problems due to a number of their attractive properties, such as low power consumption, scalability, and the multilevel nature of resistive switching (plasticity). The multilevel plasticity allows memristors to emulate synapses in hardware neuromorphic computing systems (NCSs). The aim of this work was to study Cu/poly- -xylylene(PPX)/Au memristive elements fabricated in the crossbar geometry. In developing the technology for manufacturing such samples, we took into account their characteristics, in particular stable and multilevel resistive switching (at least 10 different states) and low operating voltage (&lt;2 V), suitable for NCSs. Experiments on cycle to cycle (C2C) switching of a single memristor and device to device (D2D) switching of several memristors have shown high reproducibility of resistive switching (RS) voltages. Based on the obtained memristors, a formal hardware neuromorphic network was created that can be trained to classify simple patterns.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>35276689</pmid><doi>10.1088/1361-6528/ac5cfe</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7685-8463</orcidid><orcidid>https://orcid.org/0000-0001-5393-0285</orcidid><orcidid>https://orcid.org/0000-0001-7884-4180</orcidid><orcidid>https://orcid.org/0000-0002-5660-778X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2022-06, Vol.33 (25), p.255201
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ac5cfe
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects crossbar structure
memristor
neuromorphic network
parylene
resistive switching
title Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parylene-based%20memristive%20crossbar%20structures%20with%20multilevel%20resistive%20switching%20for%20neuromorphic%20computing&rft.jtitle=Nanotechnology&rft.au=Shvetsov,%20Boris%20S&rft.date=2022-06-18&rft.volume=33&rft.issue=25&rft.spage=255201&rft.pages=255201-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ac5cfe&rft_dat=%3Cproquest_cross%3E2638725839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638725839&rft_id=info:pmid/35276689&rfr_iscdi=true