Self-rectifying resistance switching memory based on a dynamic p–n junction
Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been consid...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2021-02, Vol.32 (8), p.85203-085203 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 085203 |
---|---|
container_issue | 8 |
container_start_page | 85203 |
container_title | Nanotechnology |
container_volume | 32 |
creator | Wu, Changjin Li, Xiaoli Xu, Xiaohong Lee, Bo Wha Chae, Seung Chul Liu, Chunli |
description | Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of
R
OFF
/
R
ON
∼ 10
4
and a large rectification ratio ∼10
6
. In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated
L
i
Z
n
−
−
L
i
i
+
complex pairs (
L
i
Z
n
−
:
p-type substitutional defect;
L
i
i
+
:
n-type interstitial defect) through the transport of
L
i
i
+
between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications. |
doi_str_mv | 10.1088/1361-6528/abc782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_abc782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457970417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI7uXWY5C-skadKkSxn8A8WFsw9pmmiGNqlJi8zOd_ANfRJbKq7Ezb1wOd8H9wBwjtElRkKscV7grGBErFWluSAHYPF7OgQLVDKeUSroMThJaYcQxoLgBXh8No3NotG9s3vnX2A0yaVeeW1gene9fp2OrWlD3MNKJVPD4KGC9d6r1mnYfX18ergb_FgQ_Ck4sqpJ5uxnL8H25nq7ucsenm7vN1cPmc5p0WcVLq3BOcorUTJWV1ZVohAca1LQUlmGmVEFJaTmVhSasWmWuFKCayUwy5dgNdd2MbwNJvWydUmbplHehCFJQhkvOaKYjyiaUR1DStFY2UXXqriXGMlJnJwsycmSnMWNkYs54kInd2GIfnzlP3z1B-6VDzInUkgkGEG57GqbfwPDvn3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457970417</pqid></control><display><type>article</type><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</creator><creatorcontrib>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</creatorcontrib><description>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of
R
OFF
/
R
ON
∼ 10
4
and a large rectification ratio ∼10
6
. In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated
L
i
Z
n
−
−
L
i
i
+
complex pairs (
L
i
Z
n
−
:
p-type substitutional defect;
L
i
i
+
:
n-type interstitial defect) through the transport of
L
i
i
+
between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc782</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crossbar array ; dynamic p–n junction ; lithium migration ; self-rectifying resistance switching ; sneak current</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (8), p.85203-085203</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</citedby><cites>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</cites><orcidid>0000-0001-9885-9128 ; 0000-0003-0025-963X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abc782/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Wu, Changjin</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><creatorcontrib>Chae, Seung Chul</creatorcontrib><creatorcontrib>Liu, Chunli</creatorcontrib><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of
R
OFF
/
R
ON
∼ 10
4
and a large rectification ratio ∼10
6
. In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated
L
i
Z
n
−
−
L
i
i
+
complex pairs (
L
i
Z
n
−
:
p-type substitutional defect;
L
i
i
+
:
n-type interstitial defect) through the transport of
L
i
i
+
between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</description><subject>crossbar array</subject><subject>dynamic p–n junction</subject><subject>lithium migration</subject><subject>self-rectifying resistance switching</subject><subject>sneak current</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI7uXWY5C-skadKkSxn8A8WFsw9pmmiGNqlJi8zOd_ANfRJbKq7Ezb1wOd8H9wBwjtElRkKscV7grGBErFWluSAHYPF7OgQLVDKeUSroMThJaYcQxoLgBXh8No3NotG9s3vnX2A0yaVeeW1gene9fp2OrWlD3MNKJVPD4KGC9d6r1mnYfX18ergb_FgQ_Ck4sqpJ5uxnL8H25nq7ucsenm7vN1cPmc5p0WcVLq3BOcorUTJWV1ZVohAca1LQUlmGmVEFJaTmVhSasWmWuFKCayUwy5dgNdd2MbwNJvWydUmbplHehCFJQhkvOaKYjyiaUR1DStFY2UXXqriXGMlJnJwsycmSnMWNkYs54kInd2GIfnzlP3z1B-6VDzInUkgkGEG57GqbfwPDvn3Q</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Wu, Changjin</creator><creator>Li, Xiaoli</creator><creator>Xu, Xiaohong</creator><creator>Lee, Bo Wha</creator><creator>Chae, Seung Chul</creator><creator>Liu, Chunli</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9885-9128</orcidid><orcidid>https://orcid.org/0000-0003-0025-963X</orcidid></search><sort><creationdate>20210219</creationdate><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><author>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>crossbar array</topic><topic>dynamic p–n junction</topic><topic>lithium migration</topic><topic>self-rectifying resistance switching</topic><topic>sneak current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changjin</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><creatorcontrib>Chae, Seung Chul</creatorcontrib><creatorcontrib>Liu, Chunli</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changjin</au><au>Li, Xiaoli</au><au>Xu, Xiaohong</au><au>Lee, Bo Wha</au><au>Chae, Seung Chul</au><au>Liu, Chunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-rectifying resistance switching memory based on a dynamic p–n junction</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>32</volume><issue>8</issue><spage>85203</spage><epage>085203</epage><pages>85203-085203</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of
R
OFF
/
R
ON
∼ 10
4
and a large rectification ratio ∼10
6
. In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated
L
i
Z
n
−
−
L
i
i
+
complex pairs (
L
i
Z
n
−
:
p-type substitutional defect;
L
i
i
+
:
n-type interstitial defect) through the transport of
L
i
i
+
between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/abc782</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9885-9128</orcidid><orcidid>https://orcid.org/0000-0003-0025-963X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2021-02, Vol.32 (8), p.85203-085203 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6528_abc782 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | crossbar array dynamic p–n junction lithium migration self-rectifying resistance switching sneak current |
title | Self-rectifying resistance switching memory based on a dynamic p–n junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-rectifying%20resistance%20switching%20memory%20based%20on%20a%20dynamic%20p%E2%80%93n%20junction&rft.jtitle=Nanotechnology&rft.au=Wu,%20Changjin&rft.date=2021-02-19&rft.volume=32&rft.issue=8&rft.spage=85203&rft.epage=085203&rft.pages=85203-085203&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc782&rft_dat=%3Cproquest_cross%3E2457970417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457970417&rft_id=info:pmid/&rfr_iscdi=true |