Self-rectifying resistance switching memory based on a dynamic p–n junction

Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2021-02, Vol.32 (8), p.85203-085203
Hauptverfasser: Wu, Changjin, Li, Xiaoli, Xu, Xiaohong, Lee, Bo Wha, Chae, Seung Chul, Liu, Chunli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085203
container_issue 8
container_start_page 85203
container_title Nanotechnology
container_volume 32
creator Wu, Changjin
Li, Xiaoli
Xu, Xiaohong
Lee, Bo Wha
Chae, Seung Chul
Liu, Chunli
description Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF / R ON  ∼ 10 4 and a large rectification ratio ∼10 6 . In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated L i Z n − − L i i + complex pairs ( L i Z n − : p-type substitutional defect; L i i + : n-type interstitial defect) through the transport of L i i + between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.
doi_str_mv 10.1088/1361-6528/abc782
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_abc782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457970417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI7uXWY5C-skadKkSxn8A8WFsw9pmmiGNqlJi8zOd_ANfRJbKq7Ezb1wOd8H9wBwjtElRkKscV7grGBErFWluSAHYPF7OgQLVDKeUSroMThJaYcQxoLgBXh8No3NotG9s3vnX2A0yaVeeW1gene9fp2OrWlD3MNKJVPD4KGC9d6r1mnYfX18ergb_FgQ_Ck4sqpJ5uxnL8H25nq7ucsenm7vN1cPmc5p0WcVLq3BOcorUTJWV1ZVohAca1LQUlmGmVEFJaTmVhSasWmWuFKCayUwy5dgNdd2MbwNJvWydUmbplHehCFJQhkvOaKYjyiaUR1DStFY2UXXqriXGMlJnJwsycmSnMWNkYs54kInd2GIfnzlP3z1B-6VDzInUkgkGEG57GqbfwPDvn3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457970417</pqid></control><display><type>article</type><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</creator><creatorcontrib>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</creatorcontrib><description>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF / R ON  ∼ 10 4 and a large rectification ratio ∼10 6 . In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated L i Z n − − L i i + complex pairs ( L i Z n − : p-type substitutional defect; L i i + : n-type interstitial defect) through the transport of L i i + between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc782</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>crossbar array ; dynamic p–n junction ; lithium migration ; self-rectifying resistance switching ; sneak current</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (8), p.85203-085203</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</citedby><cites>FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</cites><orcidid>0000-0001-9885-9128 ; 0000-0003-0025-963X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/abc782/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Wu, Changjin</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><creatorcontrib>Chae, Seung Chul</creatorcontrib><creatorcontrib>Liu, Chunli</creatorcontrib><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF / R ON  ∼ 10 4 and a large rectification ratio ∼10 6 . In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated L i Z n − − L i i + complex pairs ( L i Z n − : p-type substitutional defect; L i i + : n-type interstitial defect) through the transport of L i i + between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</description><subject>crossbar array</subject><subject>dynamic p–n junction</subject><subject>lithium migration</subject><subject>self-rectifying resistance switching</subject><subject>sneak current</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI7uXWY5C-skadKkSxn8A8WFsw9pmmiGNqlJi8zOd_ANfRJbKq7Ezb1wOd8H9wBwjtElRkKscV7grGBErFWluSAHYPF7OgQLVDKeUSroMThJaYcQxoLgBXh8No3NotG9s3vnX2A0yaVeeW1gene9fp2OrWlD3MNKJVPD4KGC9d6r1mnYfX18ergb_FgQ_Ck4sqpJ5uxnL8H25nq7ucsenm7vN1cPmc5p0WcVLq3BOcorUTJWV1ZVohAca1LQUlmGmVEFJaTmVhSasWmWuFKCayUwy5dgNdd2MbwNJvWydUmbplHehCFJQhkvOaKYjyiaUR1DStFY2UXXqriXGMlJnJwsycmSnMWNkYs54kInd2GIfnzlP3z1B-6VDzInUkgkGEG57GqbfwPDvn3Q</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Wu, Changjin</creator><creator>Li, Xiaoli</creator><creator>Xu, Xiaohong</creator><creator>Lee, Bo Wha</creator><creator>Chae, Seung Chul</creator><creator>Liu, Chunli</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9885-9128</orcidid><orcidid>https://orcid.org/0000-0003-0025-963X</orcidid></search><sort><creationdate>20210219</creationdate><title>Self-rectifying resistance switching memory based on a dynamic p–n junction</title><author>Wu, Changjin ; Li, Xiaoli ; Xu, Xiaohong ; Lee, Bo Wha ; Chae, Seung Chul ; Liu, Chunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b19fe1303b8955dbfab86871c2649af515ea6422d7f86c55f86c91ba87ca8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>crossbar array</topic><topic>dynamic p–n junction</topic><topic>lithium migration</topic><topic>self-rectifying resistance switching</topic><topic>sneak current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Changjin</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Xu, Xiaohong</creatorcontrib><creatorcontrib>Lee, Bo Wha</creatorcontrib><creatorcontrib>Chae, Seung Chul</creatorcontrib><creatorcontrib>Liu, Chunli</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Changjin</au><au>Li, Xiaoli</au><au>Xu, Xiaohong</au><au>Lee, Bo Wha</au><au>Chae, Seung Chul</au><au>Liu, Chunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-rectifying resistance switching memory based on a dynamic p–n junction</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>32</volume><issue>8</issue><spage>85203</spage><epage>085203</epage><pages>85203-085203</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Although resistance random access memory (RRAM) is considered as one of the most promising next-generation memories, the sneak-path issue is still challenging for the realization of high-density crossbar memory array. The integration of the rectifying effect with resistance switching has been considered feasible to suppress the sneaking current. Herein, we report a self-rectifying resistance switching (SR-RS) by a newly discovered Li ions migration induced dynamic p–n junction at the Li-doped ZnO and ZnO layer interface. The Au/Li–ZnO/ZnO/Pt structure exhibits a forming-free and stable resistance switching with a high resistance ratio of R OFF / R ON  ∼ 10 4 and a large rectification ratio ∼10 6 . In the Li–ZnO/ZnO bilayer, the electric field drives the dissociation and recombination of the self-compensated L i Z n − − L i i + complex pairs ( L i Z n − : p-type substitutional defect; L i i + : n-type interstitial defect) through the transport of L i i + between the two layers, thereby induces the formation of a dynamic p–n junction. Using this structure as a memory stacking device, the maximum crossbar array size has been calculated to be ∼16 Mbit in the worst-case scenario, which confirms the potential of the proposed device structure for the selection-device free and high-density resistance random access memory applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6528/abc782</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9885-9128</orcidid><orcidid>https://orcid.org/0000-0003-0025-963X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2021-02, Vol.32 (8), p.85203-085203
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_abc782
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects crossbar array
dynamic p–n junction
lithium migration
self-rectifying resistance switching
sneak current
title Self-rectifying resistance switching memory based on a dynamic p–n junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-rectifying%20resistance%20switching%20memory%20based%20on%20a%20dynamic%20p%E2%80%93n%20junction&rft.jtitle=Nanotechnology&rft.au=Wu,%20Changjin&rft.date=2021-02-19&rft.volume=32&rft.issue=8&rft.spage=85203&rft.epage=085203&rft.pages=85203-085203&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc782&rft_dat=%3Cproquest_cross%3E2457970417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457970417&rft_id=info:pmid/&rfr_iscdi=true