Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy

Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hinder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2019-12, Vol.30 (50), p.505601
Hauptverfasser: Balakirev, Sergey V, Solodovnik, Maxim S, Eremenko, Mikhail M, Konoplev, Boris G, Ageev, Oleg A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 50
container_start_page 505601
container_title Nanotechnology
container_volume 30
creator Balakirev, Sergey V
Solodovnik, Maxim S
Eremenko, Mikhail M
Konoplev, Boris G
Ageev, Oleg A
description Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hindering the formation of small size InAs/GaAs nanostructure arrays with low density and thin wetting layer. In this paper, we experimentally demonstrate that the indium droplet diameter can be reduced by decreasing the deposition time, but this reduction is limited by a critical thickness of droplet formation dependent on the substrate temperature. Using the kinetic Monte Carlo model, we propose a mechanism considering that the droplet formation begins when the system overcomes a barrier determined by the substrate attraction. As a result of physical and chemical balancing between adatom aggregation and substrate wetting, this attraction becomes weaker with increasing either temperature or deposition amount, which leads to the critical layer formation and subsequent nucleation. Using this mechanism, it is possible to provide a wide control over the nanostructure growth which is especially important at high temperatures when the processes of the island ripening are particularly intensive.
doi_str_mv 10.1088/1361-6528/ab40d6
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_ab40d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31480037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c7eab8170553a8986ae4669488a2bbedfd2143ca920faf3506f00b23be148cf03</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rp69yS5CtadNP1Ij8ui68KKB_UcpmmiWdq0pC24_96W6p4UBgZm3nc-HkKuGdwzEGLJeMKCJA7FEvMIiuSEzI-lUzKHLE6DKBLRjFy07R6AMRGyczLjLBIAPJ2T12etPtHZtqK1oa5XpcbO1o6iK6jytrMKS1riQXtqal9NzaL31n3QrVtucNXSwtdNqTuqG9vh1-GSnBksW331kxfk_fHhbf0U7F422_VqFyieQheoVGMuWApxzFFkIkEdJUkWCYFhnuvCFCGLuMIsBIOGx5AYgDzkuR6uVwb4gsA0V_m6bb02svG2Qn-QDOTIR44w5AhDTnwGy81kafq80sXR8AtkENxOAls3cl_33g0fSIeulhxkPEacAJNNYQbt3R_af3d_A3cDfSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Balakirev, Sergey V ; Solodovnik, Maxim S ; Eremenko, Mikhail M ; Konoplev, Boris G ; Ageev, Oleg A</creator><creatorcontrib>Balakirev, Sergey V ; Solodovnik, Maxim S ; Eremenko, Mikhail M ; Konoplev, Boris G ; Ageev, Oleg A</creatorcontrib><description>Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hindering the formation of small size InAs/GaAs nanostructure arrays with low density and thin wetting layer. In this paper, we experimentally demonstrate that the indium droplet diameter can be reduced by decreasing the deposition time, but this reduction is limited by a critical thickness of droplet formation dependent on the substrate temperature. Using the kinetic Monte Carlo model, we propose a mechanism considering that the droplet formation begins when the system overcomes a barrier determined by the substrate attraction. As a result of physical and chemical balancing between adatom aggregation and substrate wetting, this attraction becomes weaker with increasing either temperature or deposition amount, which leads to the critical layer formation and subsequent nucleation. Using this mechanism, it is possible to provide a wide control over the nanostructure growth which is especially important at high temperatures when the processes of the island ripening are particularly intensive.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ab40d6</identifier><identifier>PMID: 31480037</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>critical thickness ; droplet epitaxy ; In/GaAs ; Monte Carlo simulation ; nucleation</subject><ispartof>Nanotechnology, 2019-12, Vol.30 (50), p.505601</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>2019 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c7eab8170553a8986ae4669488a2bbedfd2143ca920faf3506f00b23be148cf03</citedby><cites>FETCH-LOGICAL-c370t-c7eab8170553a8986ae4669488a2bbedfd2143ca920faf3506f00b23be148cf03</cites><orcidid>0000-0003-2566-7840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/ab40d6/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31480037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balakirev, Sergey V</creatorcontrib><creatorcontrib>Solodovnik, Maxim S</creatorcontrib><creatorcontrib>Eremenko, Mikhail M</creatorcontrib><creatorcontrib>Konoplev, Boris G</creatorcontrib><creatorcontrib>Ageev, Oleg A</creatorcontrib><title>Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hindering the formation of small size InAs/GaAs nanostructure arrays with low density and thin wetting layer. In this paper, we experimentally demonstrate that the indium droplet diameter can be reduced by decreasing the deposition time, but this reduction is limited by a critical thickness of droplet formation dependent on the substrate temperature. Using the kinetic Monte Carlo model, we propose a mechanism considering that the droplet formation begins when the system overcomes a barrier determined by the substrate attraction. As a result of physical and chemical balancing between adatom aggregation and substrate wetting, this attraction becomes weaker with increasing either temperature or deposition amount, which leads to the critical layer formation and subsequent nucleation. Using this mechanism, it is possible to provide a wide control over the nanostructure growth which is especially important at high temperatures when the processes of the island ripening are particularly intensive.</description><subject>critical thickness</subject><subject>droplet epitaxy</subject><subject>In/GaAs</subject><subject>Monte Carlo simulation</subject><subject>nucleation</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMo7rp69yS5CtadNP1Ij8ui68KKB_UcpmmiWdq0pC24_96W6p4UBgZm3nc-HkKuGdwzEGLJeMKCJA7FEvMIiuSEzI-lUzKHLE6DKBLRjFy07R6AMRGyczLjLBIAPJ2T12etPtHZtqK1oa5XpcbO1o6iK6jytrMKS1riQXtqal9NzaL31n3QrVtucNXSwtdNqTuqG9vh1-GSnBksW331kxfk_fHhbf0U7F422_VqFyieQheoVGMuWApxzFFkIkEdJUkWCYFhnuvCFCGLuMIsBIOGx5AYgDzkuR6uVwb4gsA0V_m6bb02svG2Qn-QDOTIR44w5AhDTnwGy81kafq80sXR8AtkENxOAls3cl_33g0fSIeulhxkPEacAJNNYQbt3R_af3d_A3cDfSA</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Balakirev, Sergey V</creator><creator>Solodovnik, Maxim S</creator><creator>Eremenko, Mikhail M</creator><creator>Konoplev, Boris G</creator><creator>Ageev, Oleg A</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2566-7840</orcidid></search><sort><creationdate>20191213</creationdate><title>Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy</title><author>Balakirev, Sergey V ; Solodovnik, Maxim S ; Eremenko, Mikhail M ; Konoplev, Boris G ; Ageev, Oleg A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c7eab8170553a8986ae4669488a2bbedfd2143ca920faf3506f00b23be148cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>critical thickness</topic><topic>droplet epitaxy</topic><topic>In/GaAs</topic><topic>Monte Carlo simulation</topic><topic>nucleation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakirev, Sergey V</creatorcontrib><creatorcontrib>Solodovnik, Maxim S</creatorcontrib><creatorcontrib>Eremenko, Mikhail M</creatorcontrib><creatorcontrib>Konoplev, Boris G</creatorcontrib><creatorcontrib>Ageev, Oleg A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakirev, Sergey V</au><au>Solodovnik, Maxim S</au><au>Eremenko, Mikhail M</au><au>Konoplev, Boris G</au><au>Ageev, Oleg A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>30</volume><issue>50</issue><spage>505601</spage><pages>505601-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Fabrication of AIIIBV nanostructures by droplet epitaxy has many advantages over other epitaxial techniques. Although various characteristics of the growth by droplet epitaxy have been thoroughly studied for both lattice-matched and mismatched systems, little is known about physical processes hindering the formation of small size InAs/GaAs nanostructure arrays with low density and thin wetting layer. In this paper, we experimentally demonstrate that the indium droplet diameter can be reduced by decreasing the deposition time, but this reduction is limited by a critical thickness of droplet formation dependent on the substrate temperature. Using the kinetic Monte Carlo model, we propose a mechanism considering that the droplet formation begins when the system overcomes a barrier determined by the substrate attraction. As a result of physical and chemical balancing between adatom aggregation and substrate wetting, this attraction becomes weaker with increasing either temperature or deposition amount, which leads to the critical layer formation and subsequent nucleation. Using this mechanism, it is possible to provide a wide control over the nanostructure growth which is especially important at high temperatures when the processes of the island ripening are particularly intensive.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>31480037</pmid><doi>10.1088/1361-6528/ab40d6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2566-7840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2019-12, Vol.30 (50), p.505601
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_ab40d6
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects critical thickness
droplet epitaxy
In/GaAs
Monte Carlo simulation
nucleation
title Mechanism of nucleation and critical layer formation during In/GaAs droplet epitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20nucleation%20and%20critical%20layer%20formation%20during%20In/GaAs%20droplet%20epitaxy&rft.jtitle=Nanotechnology&rft.au=Balakirev,%20Sergey%20V&rft.date=2019-12-13&rft.volume=30&rft.issue=50&rft.spage=505601&rft.pages=505601-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ab40d6&rft_dat=%3Cpubmed_cross%3E31480037%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31480037&rfr_iscdi=true