Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays

Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2018-09, Vol.29 (38), p.385206
Hauptverfasser: Liberman, V, Parameswaran, L, Rothschild, M, Ait-El-Aoud, Y, Luce, A, Okamoto, M, Willcox, W B, Giardini, S, Osgood, R M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 38
container_start_page 385206
container_title Nanotechnology
container_volume 29
creator Liberman, V
Parameswaran, L
Rothschild, M
Ait-El-Aoud, Y
Luce, A
Okamoto, M
Willcox, W B
Giardini, S
Osgood, R M
description Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurements of light scattering inside silicon cells is still lacking. Here, we demonstrate experimentally and computationally that plasmonic-assisted localized and traveling modes can efficiently couple red and infrared radiation into ultrathin amorphous silicon (a-Si) layers. Utilizing patterned periodic arrays of aluminum nanostructures on thin a-Si, we perform specular and diffuse reflectivity and transmission measurements over a broad spectrum. Based on these results, we are able to separate parasitic absorption in aluminum plasmonic arrays from enhanced light absorption in the 200 nm thick amorphous silicon layer, as compared to a blank silicon layer. We discover a very efficient near-infrared a-Si absorption mechanism that occurs at the transition from the radiative to evanescent diffractive coupling, analogous to earlier surface-enhanced infrared studies. These results represent a direct demonstration of enhanced radiation coupling into silicon due to large angle scattering and show a path forward to improved ultrathin solar cell efficiency.
doi_str_mv 10.1088/1361-6528/aad00e
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6528_aad00e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29956677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-9f54e7fa93c63aaaa4984b161fa69cb6886b690e1a29f25686318b88b9d4158c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlbvniR_YG2ym80mRyn1Awpe9CjL5KuN7CZL0hX6791S7VyGGXheXh6E7il5pESIJa04LXhdiiWAIcReoPn5dYnmRNZNwZhgM3ST8zchlIqSXqNZKWXNedPM0dc67CBoa7CO49D5sMXRYZUiGAXB4M5vd3vswz5i6GMadnHMOPvO6xjwjwc82OSj8RoHCHHoIPcxTBekBId8i64cdNne_e0F-nxef6xei837y9vqaVPoqcm-kK5mtnEgK80rmIZJwRTl1AGXWnEhuOKSWAqldGXNBa-oUEIoaRitha4WiJxydYo5J-vaIfke0qGlpD2aao9a2qOW9mRqQh5OyDCq3poz8K-m-gUek2Z0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liberman, V ; Parameswaran, L ; Rothschild, M ; Ait-El-Aoud, Y ; Luce, A ; Okamoto, M ; Willcox, W B ; Giardini, S ; Osgood, R M</creator><creatorcontrib>Liberman, V ; Parameswaran, L ; Rothschild, M ; Ait-El-Aoud, Y ; Luce, A ; Okamoto, M ; Willcox, W B ; Giardini, S ; Osgood, R M</creatorcontrib><description>Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurements of light scattering inside silicon cells is still lacking. Here, we demonstrate experimentally and computationally that plasmonic-assisted localized and traveling modes can efficiently couple red and infrared radiation into ultrathin amorphous silicon (a-Si) layers. Utilizing patterned periodic arrays of aluminum nanostructures on thin a-Si, we perform specular and diffuse reflectivity and transmission measurements over a broad spectrum. Based on these results, we are able to separate parasitic absorption in aluminum plasmonic arrays from enhanced light absorption in the 200 nm thick amorphous silicon layer, as compared to a blank silicon layer. We discover a very efficient near-infrared a-Si absorption mechanism that occurs at the transition from the radiative to evanescent diffractive coupling, analogous to earlier surface-enhanced infrared studies. These results represent a direct demonstration of enhanced radiation coupling into silicon due to large angle scattering and show a path forward to improved ultrathin solar cell efficiency.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aad00e</identifier><identifier>PMID: 29956677</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanotechnology, 2018-09, Vol.29 (38), p.385206</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-9f54e7fa93c63aaaa4984b161fa69cb6886b690e1a29f25686318b88b9d4158c3</citedby><cites>FETCH-LOGICAL-c299t-9f54e7fa93c63aaaa4984b161fa69cb6886b690e1a29f25686318b88b9d4158c3</cites><orcidid>0000-0001-7470-4957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29956677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liberman, V</creatorcontrib><creatorcontrib>Parameswaran, L</creatorcontrib><creatorcontrib>Rothschild, M</creatorcontrib><creatorcontrib>Ait-El-Aoud, Y</creatorcontrib><creatorcontrib>Luce, A</creatorcontrib><creatorcontrib>Okamoto, M</creatorcontrib><creatorcontrib>Willcox, W B</creatorcontrib><creatorcontrib>Giardini, S</creatorcontrib><creatorcontrib>Osgood, R M</creatorcontrib><title>Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurements of light scattering inside silicon cells is still lacking. Here, we demonstrate experimentally and computationally that plasmonic-assisted localized and traveling modes can efficiently couple red and infrared radiation into ultrathin amorphous silicon (a-Si) layers. Utilizing patterned periodic arrays of aluminum nanostructures on thin a-Si, we perform specular and diffuse reflectivity and transmission measurements over a broad spectrum. Based on these results, we are able to separate parasitic absorption in aluminum plasmonic arrays from enhanced light absorption in the 200 nm thick amorphous silicon layer, as compared to a blank silicon layer. We discover a very efficient near-infrared a-Si absorption mechanism that occurs at the transition from the radiative to evanescent diffractive coupling, analogous to earlier surface-enhanced infrared studies. These results represent a direct demonstration of enhanced radiation coupling into silicon due to large angle scattering and show a path forward to improved ultrathin solar cell efficiency.</description><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlbvniR_YG2ym80mRyn1Awpe9CjL5KuN7CZL0hX6791S7VyGGXheXh6E7il5pESIJa04LXhdiiWAIcReoPn5dYnmRNZNwZhgM3ST8zchlIqSXqNZKWXNedPM0dc67CBoa7CO49D5sMXRYZUiGAXB4M5vd3vswz5i6GMadnHMOPvO6xjwjwc82OSj8RoHCHHoIPcxTBekBId8i64cdNne_e0F-nxef6xei837y9vqaVPoqcm-kK5mtnEgK80rmIZJwRTl1AGXWnEhuOKSWAqldGXNBa-oUEIoaRitha4WiJxydYo5J-vaIfke0qGlpD2aao9a2qOW9mRqQh5OyDCq3poz8K-m-gUek2Z0</recordid><startdate>20180921</startdate><enddate>20180921</enddate><creator>Liberman, V</creator><creator>Parameswaran, L</creator><creator>Rothschild, M</creator><creator>Ait-El-Aoud, Y</creator><creator>Luce, A</creator><creator>Okamoto, M</creator><creator>Willcox, W B</creator><creator>Giardini, S</creator><creator>Osgood, R M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7470-4957</orcidid></search><sort><creationdate>20180921</creationdate><title>Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays</title><author>Liberman, V ; Parameswaran, L ; Rothschild, M ; Ait-El-Aoud, Y ; Luce, A ; Okamoto, M ; Willcox, W B ; Giardini, S ; Osgood, R M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-9f54e7fa93c63aaaa4984b161fa69cb6886b690e1a29f25686318b88b9d4158c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liberman, V</creatorcontrib><creatorcontrib>Parameswaran, L</creatorcontrib><creatorcontrib>Rothschild, M</creatorcontrib><creatorcontrib>Ait-El-Aoud, Y</creatorcontrib><creatorcontrib>Luce, A</creatorcontrib><creatorcontrib>Okamoto, M</creatorcontrib><creatorcontrib>Willcox, W B</creatorcontrib><creatorcontrib>Giardini, S</creatorcontrib><creatorcontrib>Osgood, R M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liberman, V</au><au>Parameswaran, L</au><au>Rothschild, M</au><au>Ait-El-Aoud, Y</au><au>Luce, A</au><au>Okamoto, M</au><au>Willcox, W B</au><au>Giardini, S</au><au>Osgood, R M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2018-09-21</date><risdate>2018</risdate><volume>29</volume><issue>38</issue><spage>385206</spage><pages>385206-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurements of light scattering inside silicon cells is still lacking. Here, we demonstrate experimentally and computationally that plasmonic-assisted localized and traveling modes can efficiently couple red and infrared radiation into ultrathin amorphous silicon (a-Si) layers. Utilizing patterned periodic arrays of aluminum nanostructures on thin a-Si, we perform specular and diffuse reflectivity and transmission measurements over a broad spectrum. Based on these results, we are able to separate parasitic absorption in aluminum plasmonic arrays from enhanced light absorption in the 200 nm thick amorphous silicon layer, as compared to a blank silicon layer. We discover a very efficient near-infrared a-Si absorption mechanism that occurs at the transition from the radiative to evanescent diffractive coupling, analogous to earlier surface-enhanced infrared studies. These results represent a direct demonstration of enhanced radiation coupling into silicon due to large angle scattering and show a path forward to improved ultrathin solar cell efficiency.</abstract><cop>England</cop><pmid>29956677</pmid><doi>10.1088/1361-6528/aad00e</doi><orcidid>https://orcid.org/0000-0001-7470-4957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2018-09, Vol.29 (38), p.385206
issn 0957-4484
1361-6528
language eng
recordid cdi_crossref_primary_10_1088_1361_6528_aad00e
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Enhanced coupling of broadband light into amorphous silicon via periodic nanoplasmonic arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20coupling%20of%20broadband%20light%20into%20amorphous%20silicon%20via%20periodic%20nanoplasmonic%20arrays&rft.jtitle=Nanotechnology&rft.au=Liberman,%20V&rft.date=2018-09-21&rft.volume=29&rft.issue=38&rft.spage=385206&rft.pages=385206-&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/1361-6528/aad00e&rft_dat=%3Cpubmed_cross%3E29956677%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29956677&rfr_iscdi=true