Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation

Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modelling and simulation in materials science and engineering 2024-04, Vol.32 (3), p.35002
Hauptverfasser: Liu, Xiao-Bin, Su, Chang, Huang, Qiu-Xia, Yang, Sheng-Hui, Zhang, Lei, Xie, Xiao-Lan, Zhou, Huan-Fu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35002
container_title Modelling and simulation in materials science and engineering
container_volume 32
creator Liu, Xiao-Bin
Su, Chang
Huang, Qiu-Xia
Yang, Sheng-Hui
Zhang, Lei
Xie, Xiao-Lan
Zhou, Huan-Fu
description Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel MWDCs based on machine learning was investigated in this work. Firstly, we collected 327 single-phase spinel MWDC entries and constructed feature engineering, which includes feature generation and feature selection (five dominant features, including Mpo, Dar, Mmbe, Aose and Dgnve, were selected from 208 generated features). Next, seven commonly used algorithms were utilized during the training process of machine learning models. The extreme gradient boosting (XGBoost) model shows the best performance, achieving R -squared ( R 2 ) of 0.9095, mean absolute error of 1.02 and root mean square error of 1.96 on the train and test dataset. In addition, the machine learning models, especially the XGBoost model, show enhanced prediction (calculation accuracy) of the permittivity of spinel MWDCs compared to the traditional Clausius–Mossotti equation, which can provide a guide for the design and development of spinel MWDCs applied for wireless communication.
doi_str_mv 10.1088/1361-651X/ad1f46
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_651X_ad1f46</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>msmsad1f46</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1336ecbf47b0225f18241dd0c95c113b969aa17773eb4e77ff2083bdddafa62c3</originalsourceid><addsrcrecordid>eNp1kDlPAzEQhS0EEiHQU7qkYGFs71miiEtKRAMSnTXrgzjaS7YTlJ4fzq6CqKAazcx7n54eIZcMbhiU5S0TOUvyjL3fomY2zY_I7Pd0TGZQ5VkCohKn5CyEDQBkJS9m5GuFau06QxuDvnPdBzXdGjtlNB280U5F13e0t3QwvnUxup2L-2kPw-hqaOuU7z9xZ6h2pjEqeqeoMh7HR6CqbwccMTT2NHrUbqJhQxfJiips1LbB6XJOTiw2wVz8zDl5e7h_XTwly5fH58XdMlECypgwIXKjapsWNXCeWVbylGkNqsoUY6Ku8gqRFUUhTJ2aorCWQylqrTVazLkScwIH7pg5BG-sHLxr0e8lAzm1KKfK5FSZPLQ4Wq4OFtcPctNv_Rg_yDa0QQouhQSRAXA5aDtKr_-Q_kv-BiChhWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Xiao-Bin ; Su, Chang ; Huang, Qiu-Xia ; Yang, Sheng-Hui ; Zhang, Lei ; Xie, Xiao-Lan ; Zhou, Huan-Fu</creator><creatorcontrib>Liu, Xiao-Bin ; Su, Chang ; Huang, Qiu-Xia ; Yang, Sheng-Hui ; Zhang, Lei ; Xie, Xiao-Lan ; Zhou, Huan-Fu</creatorcontrib><description>Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel MWDCs based on machine learning was investigated in this work. Firstly, we collected 327 single-phase spinel MWDC entries and constructed feature engineering, which includes feature generation and feature selection (five dominant features, including Mpo, Dar, Mmbe, Aose and Dgnve, were selected from 208 generated features). Next, seven commonly used algorithms were utilized during the training process of machine learning models. The extreme gradient boosting (XGBoost) model shows the best performance, achieving R -squared ( R 2 ) of 0.9095, mean absolute error of 1.02 and root mean square error of 1.96 on the train and test dataset. In addition, the machine learning models, especially the XGBoost model, show enhanced prediction (calculation accuracy) of the permittivity of spinel MWDCs compared to the traditional Clausius–Mossotti equation, which can provide a guide for the design and development of spinel MWDCs applied for wireless communication.</description><identifier>ISSN: 0965-0393</identifier><identifier>EISSN: 1361-651X</identifier><identifier>DOI: 10.1088/1361-651X/ad1f46</identifier><identifier>CODEN: MSMEEU</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Clausius–Mossotti equation ; machine learning ; microwave dielectric ceramics ; permittivity prediction ; spinel ; XGBoost</subject><ispartof>Modelling and simulation in materials science and engineering, 2024-04, Vol.32 (3), p.35002</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-1336ecbf47b0225f18241dd0c95c113b969aa17773eb4e77ff2083bdddafa62c3</cites><orcidid>0009-0003-4432-7566 ; 0000-0001-6451-2927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-651X/ad1f46/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Liu, Xiao-Bin</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Huang, Qiu-Xia</creatorcontrib><creatorcontrib>Yang, Sheng-Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xie, Xiao-Lan</creatorcontrib><creatorcontrib>Zhou, Huan-Fu</creatorcontrib><title>Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation</title><title>Modelling and simulation in materials science and engineering</title><addtitle>MSMSE</addtitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><description>Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel MWDCs based on machine learning was investigated in this work. Firstly, we collected 327 single-phase spinel MWDC entries and constructed feature engineering, which includes feature generation and feature selection (five dominant features, including Mpo, Dar, Mmbe, Aose and Dgnve, were selected from 208 generated features). Next, seven commonly used algorithms were utilized during the training process of machine learning models. The extreme gradient boosting (XGBoost) model shows the best performance, achieving R -squared ( R 2 ) of 0.9095, mean absolute error of 1.02 and root mean square error of 1.96 on the train and test dataset. In addition, the machine learning models, especially the XGBoost model, show enhanced prediction (calculation accuracy) of the permittivity of spinel MWDCs compared to the traditional Clausius–Mossotti equation, which can provide a guide for the design and development of spinel MWDCs applied for wireless communication.</description><subject>Clausius–Mossotti equation</subject><subject>machine learning</subject><subject>microwave dielectric ceramics</subject><subject>permittivity prediction</subject><subject>spinel</subject><subject>XGBoost</subject><issn>0965-0393</issn><issn>1361-651X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDlPAzEQhS0EEiHQU7qkYGFs71miiEtKRAMSnTXrgzjaS7YTlJ4fzq6CqKAazcx7n54eIZcMbhiU5S0TOUvyjL3fomY2zY_I7Pd0TGZQ5VkCohKn5CyEDQBkJS9m5GuFau06QxuDvnPdBzXdGjtlNB280U5F13e0t3QwvnUxup2L-2kPw-hqaOuU7z9xZ6h2pjEqeqeoMh7HR6CqbwccMTT2NHrUbqJhQxfJiips1LbB6XJOTiw2wVz8zDl5e7h_XTwly5fH58XdMlECypgwIXKjapsWNXCeWVbylGkNqsoUY6Ku8gqRFUUhTJ2aorCWQylqrTVazLkScwIH7pg5BG-sHLxr0e8lAzm1KKfK5FSZPLQ4Wq4OFtcPctNv_Rg_yDa0QQouhQSRAXA5aDtKr_-Q_kv-BiChhWE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Liu, Xiao-Bin</creator><creator>Su, Chang</creator><creator>Huang, Qiu-Xia</creator><creator>Yang, Sheng-Hui</creator><creator>Zhang, Lei</creator><creator>Xie, Xiao-Lan</creator><creator>Zhou, Huan-Fu</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-4432-7566</orcidid><orcidid>https://orcid.org/0000-0001-6451-2927</orcidid></search><sort><creationdate>20240401</creationdate><title>Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation</title><author>Liu, Xiao-Bin ; Su, Chang ; Huang, Qiu-Xia ; Yang, Sheng-Hui ; Zhang, Lei ; Xie, Xiao-Lan ; Zhou, Huan-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1336ecbf47b0225f18241dd0c95c113b969aa17773eb4e77ff2083bdddafa62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clausius–Mossotti equation</topic><topic>machine learning</topic><topic>microwave dielectric ceramics</topic><topic>permittivity prediction</topic><topic>spinel</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao-Bin</creatorcontrib><creatorcontrib>Su, Chang</creatorcontrib><creatorcontrib>Huang, Qiu-Xia</creatorcontrib><creatorcontrib>Yang, Sheng-Hui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xie, Xiao-Lan</creatorcontrib><creatorcontrib>Zhou, Huan-Fu</creatorcontrib><collection>CrossRef</collection><jtitle>Modelling and simulation in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao-Bin</au><au>Su, Chang</au><au>Huang, Qiu-Xia</au><au>Yang, Sheng-Hui</au><au>Zhang, Lei</au><au>Xie, Xiao-Lan</au><au>Zhou, Huan-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation</atitle><jtitle>Modelling and simulation in materials science and engineering</jtitle><stitle>MSMSE</stitle><addtitle>Modelling Simul. Mater. Sci. Eng</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>35002</spage><pages>35002-</pages><issn>0965-0393</issn><eissn>1361-651X</eissn><coden>MSMEEU</coden><abstract>Microwave dielectric ceramic (MWDC) is crucial in advancing the development of 5G technology and the communication field. The prediction or calculation of its properties is of great significance for accelerating the design and development of MWDCs. Therefore, the prediction of permittivity of spinel MWDCs based on machine learning was investigated in this work. Firstly, we collected 327 single-phase spinel MWDC entries and constructed feature engineering, which includes feature generation and feature selection (five dominant features, including Mpo, Dar, Mmbe, Aose and Dgnve, were selected from 208 generated features). Next, seven commonly used algorithms were utilized during the training process of machine learning models. The extreme gradient boosting (XGBoost) model shows the best performance, achieving R -squared ( R 2 ) of 0.9095, mean absolute error of 1.02 and root mean square error of 1.96 on the train and test dataset. In addition, the machine learning models, especially the XGBoost model, show enhanced prediction (calculation accuracy) of the permittivity of spinel MWDCs compared to the traditional Clausius–Mossotti equation, which can provide a guide for the design and development of spinel MWDCs applied for wireless communication.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-651X/ad1f46</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0003-4432-7566</orcidid><orcidid>https://orcid.org/0000-0001-6451-2927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-0393
ispartof Modelling and simulation in materials science and engineering, 2024-04, Vol.32 (3), p.35002
issn 0965-0393
1361-651X
language eng
recordid cdi_crossref_primary_10_1088_1361_651X_ad1f46
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Clausius–Mossotti equation
machine learning
microwave dielectric ceramics
permittivity prediction
spinel
XGBoost
title Machine learning enhanced prediction of permittivity of spinel microwave dielectric ceramics compared to traditional C-M calculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20enhanced%20prediction%20of%20permittivity%20of%20spinel%20microwave%20dielectric%20ceramics%20compared%20to%20traditional%20C-M%20calculation&rft.jtitle=Modelling%20and%20simulation%20in%20materials%20science%20and%20engineering&rft.au=Liu,%20Xiao-Bin&rft.date=2024-04-01&rft.volume=32&rft.issue=3&rft.spage=35002&rft.pages=35002-&rft.issn=0965-0393&rft.eissn=1361-651X&rft.coden=MSMEEU&rft_id=info:doi/10.1088/1361-651X/ad1f46&rft_dat=%3Ciop_cross%3Emsmsad1f46%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true