Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation

In response to the issues of inaccurate tracking precision caused by continuous turning and variable road adhesion coefficients on complex roads in mining areas for unmanned mining trucks, this paper adopts unscented Kalman filter (UKF) to estimate the road adhesion coefficient. Based on this, an ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-12, Vol.35 (12), p.126207
Hauptverfasser: Zhang, Yao, Ye, Qing, Wan, Jianan, Wang, Ruochen, Xu, LeiJun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 126207
container_title Measurement science & technology
container_volume 35
creator Zhang, Yao
Ye, Qing
Wan, Jianan
Wang, Ruochen
Xu, LeiJun
description In response to the issues of inaccurate tracking precision caused by continuous turning and variable road adhesion coefficients on complex roads in mining areas for unmanned mining trucks, this paper adopts unscented Kalman filter (UKF) to estimate the road adhesion coefficient. Based on this, an adaptive preview feedforward linear quadratic regulator (LQR) control algorithm is designed using genetic algorithm, feedforward control, and linear quadratic optimal path tracking control methods. Firstly, a nine degree of freedom vehicle dynamics model and a two degree of freedom vehicle lateral dynamics model are established, and the Dugoff model to calculate tire forces is introduced; secondly, utilizing UKF to estimate the road adhesion coefficient, and leveraging active disturbance rejection control for rapid tracking of road curvature, an optimized design of the LQR controller is carried out. Then, the effectiveness of the designed controller was verified through Trucksim/Simulink joint simulation testing. Finally, the hardware in the loop test results showed that the designed controller had good tracking accuracy and strong adaptability in complex road and special working conditions in mining areas.
doi_str_mv 10.1088/1361-6501/ad7a16
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad7a16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad7a16</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-64ea25bfa9495a599a05659cc6161c2bd51048b9cf83dff9e040739ed92ae9883</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5-g_ELqOYyc-ooqXVKkXOEcbP1rT1q5s9wC_noQiTrs7Ws2MPkLuGTww6LoF45JVUgBboGmRyQsy-5cuyQyUaCuoOb8mNzl_AkALSs1IXh-LP_hvLD4Gamz2m0Cjo6dwwBCsoQcffNjQkk56R49YtuOKejdpOoaS4n5vEx0wj7-jQ4poKJrtaDReOlrnvPY2FGrzGPQbc0uuHO6zvfubc_Lx_PS-fK1W65e35eOq0qyWpZKNxVoMDlWjBAqlEIQUSmvJJNP1YASDphuUdh03zikLDbRcWaNqtKrr-JzA2VenmHOyrj-msUL66hn0E7R-ItRPhPozNP4DtWtjBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhang, Yao ; Ye, Qing ; Wan, Jianan ; Wang, Ruochen ; Xu, LeiJun</creator><creatorcontrib>Zhang, Yao ; Ye, Qing ; Wan, Jianan ; Wang, Ruochen ; Xu, LeiJun</creatorcontrib><description>In response to the issues of inaccurate tracking precision caused by continuous turning and variable road adhesion coefficients on complex roads in mining areas for unmanned mining trucks, this paper adopts unscented Kalman filter (UKF) to estimate the road adhesion coefficient. Based on this, an adaptive preview feedforward linear quadratic regulator (LQR) control algorithm is designed using genetic algorithm, feedforward control, and linear quadratic optimal path tracking control methods. Firstly, a nine degree of freedom vehicle dynamics model and a two degree of freedom vehicle lateral dynamics model are established, and the Dugoff model to calculate tire forces is introduced; secondly, utilizing UKF to estimate the road adhesion coefficient, and leveraging active disturbance rejection control for rapid tracking of road curvature, an optimized design of the LQR controller is carried out. Then, the effectiveness of the designed controller was verified through Trucksim/Simulink joint simulation testing. Finally, the hardware in the loop test results showed that the designed controller had good tracking accuracy and strong adaptability in complex road and special working conditions in mining areas.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad7a16</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-12, Vol.35 (12), p.126207</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-64ea25bfa9495a599a05659cc6161c2bd51048b9cf83dff9e040739ed92ae9883</cites><orcidid>0000-0002-8738-817X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Wan, Jianan</creatorcontrib><creatorcontrib>Wang, Ruochen</creatorcontrib><creatorcontrib>Xu, LeiJun</creatorcontrib><title>Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation</title><title>Measurement science &amp; technology</title><description>In response to the issues of inaccurate tracking precision caused by continuous turning and variable road adhesion coefficients on complex roads in mining areas for unmanned mining trucks, this paper adopts unscented Kalman filter (UKF) to estimate the road adhesion coefficient. Based on this, an adaptive preview feedforward linear quadratic regulator (LQR) control algorithm is designed using genetic algorithm, feedforward control, and linear quadratic optimal path tracking control methods. Firstly, a nine degree of freedom vehicle dynamics model and a two degree of freedom vehicle lateral dynamics model are established, and the Dugoff model to calculate tire forces is introduced; secondly, utilizing UKF to estimate the road adhesion coefficient, and leveraging active disturbance rejection control for rapid tracking of road curvature, an optimized design of the LQR controller is carried out. Then, the effectiveness of the designed controller was verified through Trucksim/Simulink joint simulation testing. Finally, the hardware in the loop test results showed that the designed controller had good tracking accuracy and strong adaptability in complex road and special working conditions in mining areas.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5-g_ELqOYyc-ooqXVKkXOEcbP1rT1q5s9wC_noQiTrs7Ws2MPkLuGTww6LoF45JVUgBboGmRyQsy-5cuyQyUaCuoOb8mNzl_AkALSs1IXh-LP_hvLD4Gamz2m0Cjo6dwwBCsoQcffNjQkk56R49YtuOKejdpOoaS4n5vEx0wj7-jQ4poKJrtaDReOlrnvPY2FGrzGPQbc0uuHO6zvfubc_Lx_PS-fK1W65e35eOq0qyWpZKNxVoMDlWjBAqlEIQUSmvJJNP1YASDphuUdh03zikLDbRcWaNqtKrr-JzA2VenmHOyrj-msUL66hn0E7R-ItRPhPozNP4DtWtjBA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Yao</creator><creator>Ye, Qing</creator><creator>Wan, Jianan</creator><creator>Wang, Ruochen</creator><creator>Xu, LeiJun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8738-817X</orcidid></search><sort><creationdate>20241201</creationdate><title>Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation</title><author>Zhang, Yao ; Ye, Qing ; Wan, Jianan ; Wang, Ruochen ; Xu, LeiJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-64ea25bfa9495a599a05659cc6161c2bd51048b9cf83dff9e040739ed92ae9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yao</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Wan, Jianan</creatorcontrib><creatorcontrib>Wang, Ruochen</creatorcontrib><creatorcontrib>Xu, LeiJun</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yao</au><au>Ye, Qing</au><au>Wan, Jianan</au><au>Wang, Ruochen</au><au>Xu, LeiJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>12</issue><spage>126207</spage><pages>126207-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>In response to the issues of inaccurate tracking precision caused by continuous turning and variable road adhesion coefficients on complex roads in mining areas for unmanned mining trucks, this paper adopts unscented Kalman filter (UKF) to estimate the road adhesion coefficient. Based on this, an adaptive preview feedforward linear quadratic regulator (LQR) control algorithm is designed using genetic algorithm, feedforward control, and linear quadratic optimal path tracking control methods. Firstly, a nine degree of freedom vehicle dynamics model and a two degree of freedom vehicle lateral dynamics model are established, and the Dugoff model to calculate tire forces is introduced; secondly, utilizing UKF to estimate the road adhesion coefficient, and leveraging active disturbance rejection control for rapid tracking of road curvature, an optimized design of the LQR controller is carried out. Then, the effectiveness of the designed controller was verified through Trucksim/Simulink joint simulation testing. Finally, the hardware in the loop test results showed that the designed controller had good tracking accuracy and strong adaptability in complex road and special working conditions in mining areas.</abstract><doi>10.1088/1361-6501/ad7a16</doi><orcidid>https://orcid.org/0000-0002-8738-817X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-12, Vol.35 (12), p.126207
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad7a16
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Optimization design of unmanned mining truck path tracking controller based on road adhesion coefficient estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20design%20of%20unmanned%20mining%20truck%20path%20tracking%20controller%20based%20on%20road%20adhesion%20coefficient%20estimation&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Zhang,%20Yao&rft.date=2024-12-01&rft.volume=35&rft.issue=12&rft.spage=126207&rft.pages=126207-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad7a16&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad7a16%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true