Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly

CG (Cover Glass) is a critical component of electronic screens, and its manufacturing quality is closely relevant to the display effect. To satisfy the requirement of quality control, a machine vision system for real-time inspection of particles in the OCA (Optically Clear Adhesive) layer of CG is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-11, Vol.35 (11), p.115902
Hauptverfasser: Miao, Huisi, Yang, Wucheng, Xu, Weidong, Guo, Yuhao, Zhao, Hong, Huang, Wei, Zhang, Dongbo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115902
container_title Measurement science & technology
container_volume 35
creator Miao, Huisi
Yang, Wucheng
Xu, Weidong
Guo, Yuhao
Zhao, Hong
Huang, Wei
Zhang, Dongbo
description CG (Cover Glass) is a critical component of electronic screens, and its manufacturing quality is closely relevant to the display effect. To satisfy the requirement of quality control, a machine vision system for real-time inspection of particles in the OCA (Optically Clear Adhesive) layer of CG is presented in this paper. With a brief description of the optical logic of particle imaging and the design of the vision system, our emphasis is put on the post-processing image analysis. To align particles regions in the CG under multi-mode imaging, a spatial alignment calibration algorithm is proposed with perspective distortion correction to calculate the triaxial offset. Then, a CLAHE+PM filtering is adopted to enhance the contrast of the particle. Furthermore, a Meanshift method combined with adaptive local thresholding is proposed to extract the contours of tiny particles. Finally, to distinguish between multiple layers of particles in the CG and detect OCA particles, a combination of fast background reconstruction and Averaged Stochastic Gradient Descent-Support Vector Machine is used. According to in-line experiments and tests, our system can find out a majority of the OCA particles with a P R (over-detection rate) of 1.31% and a P M (miss detection rate) of 0.33% for over 10 000 CG samples.
doi_str_mv 10.1088/1361-6501/ad6bae
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad6bae</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad6bae</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126t-45d7d7cfb0ca467cdcf70d00c837a4e533da65ee8c1c1165cd4494acf40356573</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWKt7l3mBsSfNbWZZijcodKPr4fQkqSOZZkimQt_eKRVXP_y3xcfYo4AnAXW9ENKIymgQC3Rmh_6Kzf6tazaDRtsKllLesrtSvgHAQtPM2H51HFOPo3e8O5TB09ilA8dhyAnpi4eU-Xa94gPmsaPoy9Ti_TGOXRXx5PM0o_TjM99HLIWnwF1XhinifXLH6Pnk-n4XT_fsJmAs_uFP5-zz5flj_VZttq_v69WmIrE0Y6W0s85S2AGhMpYcBQsOgGppUXktpUOjva9JkBBGk1OqUUhBgdRGWzlncPmlnErJPrRD7nrMp1ZAewbVnqm0ZyrtBZT8BYAkXuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Miao, Huisi ; Yang, Wucheng ; Xu, Weidong ; Guo, Yuhao ; Zhao, Hong ; Huang, Wei ; Zhang, Dongbo</creator><creatorcontrib>Miao, Huisi ; Yang, Wucheng ; Xu, Weidong ; Guo, Yuhao ; Zhao, Hong ; Huang, Wei ; Zhang, Dongbo</creatorcontrib><description>CG (Cover Glass) is a critical component of electronic screens, and its manufacturing quality is closely relevant to the display effect. To satisfy the requirement of quality control, a machine vision system for real-time inspection of particles in the OCA (Optically Clear Adhesive) layer of CG is presented in this paper. With a brief description of the optical logic of particle imaging and the design of the vision system, our emphasis is put on the post-processing image analysis. To align particles regions in the CG under multi-mode imaging, a spatial alignment calibration algorithm is proposed with perspective distortion correction to calculate the triaxial offset. Then, a CLAHE+PM filtering is adopted to enhance the contrast of the particle. Furthermore, a Meanshift method combined with adaptive local thresholding is proposed to extract the contours of tiny particles. Finally, to distinguish between multiple layers of particles in the CG and detect OCA particles, a combination of fast background reconstruction and Averaged Stochastic Gradient Descent-Support Vector Machine is used. According to in-line experiments and tests, our system can find out a majority of the OCA particles with a P R (over-detection rate) of 1.31% and a P M (miss detection rate) of 0.33% for over 10 000 CG samples.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad6bae</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-11, Vol.35 (11), p.115902</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c126t-45d7d7cfb0ca467cdcf70d00c837a4e533da65ee8c1c1165cd4494acf40356573</cites><orcidid>0000-0003-3776-3426 ; 0009-0001-8847-8767 ; 0000-0002-4763-601X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Miao, Huisi</creatorcontrib><creatorcontrib>Yang, Wucheng</creatorcontrib><creatorcontrib>Xu, Weidong</creatorcontrib><creatorcontrib>Guo, Yuhao</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zhang, Dongbo</creatorcontrib><title>Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly</title><title>Measurement science &amp; technology</title><description>CG (Cover Glass) is a critical component of electronic screens, and its manufacturing quality is closely relevant to the display effect. To satisfy the requirement of quality control, a machine vision system for real-time inspection of particles in the OCA (Optically Clear Adhesive) layer of CG is presented in this paper. With a brief description of the optical logic of particle imaging and the design of the vision system, our emphasis is put on the post-processing image analysis. To align particles regions in the CG under multi-mode imaging, a spatial alignment calibration algorithm is proposed with perspective distortion correction to calculate the triaxial offset. Then, a CLAHE+PM filtering is adopted to enhance the contrast of the particle. Furthermore, a Meanshift method combined with adaptive local thresholding is proposed to extract the contours of tiny particles. Finally, to distinguish between multiple layers of particles in the CG and detect OCA particles, a combination of fast background reconstruction and Averaged Stochastic Gradient Descent-Support Vector Machine is used. According to in-line experiments and tests, our system can find out a majority of the OCA particles with a P R (over-detection rate) of 1.31% and a P M (miss detection rate) of 0.33% for over 10 000 CG samples.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWKt7l3mBsSfNbWZZijcodKPr4fQkqSOZZkimQt_eKRVXP_y3xcfYo4AnAXW9ENKIymgQC3Rmh_6Kzf6tazaDRtsKllLesrtSvgHAQtPM2H51HFOPo3e8O5TB09ilA8dhyAnpi4eU-Xa94gPmsaPoy9Ti_TGOXRXx5PM0o_TjM99HLIWnwF1XhinifXLH6Pnk-n4XT_fsJmAs_uFP5-zz5flj_VZttq_v69WmIrE0Y6W0s85S2AGhMpYcBQsOgGppUXktpUOjva9JkBBGk1OqUUhBgdRGWzlncPmlnErJPrRD7nrMp1ZAewbVnqm0ZyrtBZT8BYAkXuk</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Miao, Huisi</creator><creator>Yang, Wucheng</creator><creator>Xu, Weidong</creator><creator>Guo, Yuhao</creator><creator>Zhao, Hong</creator><creator>Huang, Wei</creator><creator>Zhang, Dongbo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3776-3426</orcidid><orcidid>https://orcid.org/0009-0001-8847-8767</orcidid><orcidid>https://orcid.org/0000-0002-4763-601X</orcidid></search><sort><creationdate>20241101</creationdate><title>Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly</title><author>Miao, Huisi ; Yang, Wucheng ; Xu, Weidong ; Guo, Yuhao ; Zhao, Hong ; Huang, Wei ; Zhang, Dongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126t-45d7d7cfb0ca467cdcf70d00c837a4e533da65ee8c1c1165cd4494acf40356573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Huisi</creatorcontrib><creatorcontrib>Yang, Wucheng</creatorcontrib><creatorcontrib>Xu, Weidong</creatorcontrib><creatorcontrib>Guo, Yuhao</creatorcontrib><creatorcontrib>Zhao, Hong</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Zhang, Dongbo</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Huisi</au><au>Yang, Wucheng</au><au>Xu, Weidong</au><au>Guo, Yuhao</au><au>Zhao, Hong</au><au>Huang, Wei</au><au>Zhang, Dongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>35</volume><issue>11</issue><spage>115902</spage><pages>115902-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>CG (Cover Glass) is a critical component of electronic screens, and its manufacturing quality is closely relevant to the display effect. To satisfy the requirement of quality control, a machine vision system for real-time inspection of particles in the OCA (Optically Clear Adhesive) layer of CG is presented in this paper. With a brief description of the optical logic of particle imaging and the design of the vision system, our emphasis is put on the post-processing image analysis. To align particles regions in the CG under multi-mode imaging, a spatial alignment calibration algorithm is proposed with perspective distortion correction to calculate the triaxial offset. Then, a CLAHE+PM filtering is adopted to enhance the contrast of the particle. Furthermore, a Meanshift method combined with adaptive local thresholding is proposed to extract the contours of tiny particles. Finally, to distinguish between multiple layers of particles in the CG and detect OCA particles, a combination of fast background reconstruction and Averaged Stochastic Gradient Descent-Support Vector Machine is used. According to in-line experiments and tests, our system can find out a majority of the OCA particles with a P R (over-detection rate) of 1.31% and a P M (miss detection rate) of 0.33% for over 10 000 CG samples.</abstract><doi>10.1088/1361-6501/ad6bae</doi><orcidid>https://orcid.org/0000-0003-3776-3426</orcidid><orcidid>https://orcid.org/0009-0001-8847-8767</orcidid><orcidid>https://orcid.org/0000-0002-4763-601X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-11, Vol.35 (11), p.115902
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad6bae
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Automated inspection approach for OCA particles in multi-layered cover glass of display module assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20inspection%20approach%20for%20OCA%20particles%20in%20multi-layered%20cover%20glass%20of%20display%20module%20assembly&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Miao,%20Huisi&rft.date=2024-11-01&rft.volume=35&rft.issue=11&rft.spage=115902&rft.pages=115902-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad6bae&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad6bae%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true