Artificial neural network assisted spectral scatterometry for grating quality control
Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2024-08, Vol.35 (8), p.85025 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85025 |
container_title | Measurement science & technology |
container_volume | 35 |
creator | Mattila, Aleksi Nysten, Johan Heikkinen, Ville Kilpi, Jorma Korpelainen, Virpi Hansen, Poul-Erik Karvinen, Petri Kuittinen, Markku Lassila, Antti |
description | Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty (
k
= 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty. |
doi_str_mv | 10.1088/1361-6501/ad4e52 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad4e52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad4e52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoOFb3LvMHxr5MMplkWYpfUHBj1yFmXkp0OqlJisy_17Hi6sC9l7s4hNwyuGOg1JJxyWrZAlvaXmDbnJHqPzonFei2q6Hh_JJc5fwOAB1oXZHtKpXggwt2oCMe0y_KV0wf1OYccsGe5gO6MjfZ2VIwxT2WNFEfE90lW8K4o59HO4QyURfHkuJwTS68HTLe_HFBtg_3r-unevPy-LxebWrHpCo1ggCvpNBoXSu10FK8eesZsM4xBah6p3mLPThU0OiGdwAMRAM99D_jji8InH5dijkn9OaQwt6myTAwsxYzOzCzA3PSwr8BHFJXXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</creator><creatorcontrib>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</creatorcontrib><description>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty (
k
= 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad4e52</identifier><language>eng</language><ispartof>Measurement science & technology, 2024-08, Vol.35 (8), p.85025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</cites><orcidid>0000-0002-5334-6844 ; 0000-0002-6991-7082 ; 0009-0008-6047-6189 ; 0000-0002-1664-8763 ; 0000-0002-3251-2524 ; 0000-0002-9208-5501 ; 0000-0003-2932-4298 ; 0000-0001-9123-8521 ; 0000-0001-6294-4267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mattila, Aleksi</creatorcontrib><creatorcontrib>Nysten, Johan</creatorcontrib><creatorcontrib>Heikkinen, Ville</creatorcontrib><creatorcontrib>Kilpi, Jorma</creatorcontrib><creatorcontrib>Korpelainen, Virpi</creatorcontrib><creatorcontrib>Hansen, Poul-Erik</creatorcontrib><creatorcontrib>Karvinen, Petri</creatorcontrib><creatorcontrib>Kuittinen, Markku</creatorcontrib><creatorcontrib>Lassila, Antti</creatorcontrib><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><title>Measurement science & technology</title><description>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty (
k
= 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoOFb3LvMHxr5MMplkWYpfUHBj1yFmXkp0OqlJisy_17Hi6sC9l7s4hNwyuGOg1JJxyWrZAlvaXmDbnJHqPzonFei2q6Hh_JJc5fwOAB1oXZHtKpXggwt2oCMe0y_KV0wf1OYccsGe5gO6MjfZ2VIwxT2WNFEfE90lW8K4o59HO4QyURfHkuJwTS68HTLe_HFBtg_3r-unevPy-LxebWrHpCo1ggCvpNBoXSu10FK8eesZsM4xBah6p3mLPThU0OiGdwAMRAM99D_jji8InH5dijkn9OaQwt6myTAwsxYzOzCzA3PSwr8BHFJXXw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Mattila, Aleksi</creator><creator>Nysten, Johan</creator><creator>Heikkinen, Ville</creator><creator>Kilpi, Jorma</creator><creator>Korpelainen, Virpi</creator><creator>Hansen, Poul-Erik</creator><creator>Karvinen, Petri</creator><creator>Kuittinen, Markku</creator><creator>Lassila, Antti</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5334-6844</orcidid><orcidid>https://orcid.org/0000-0002-6991-7082</orcidid><orcidid>https://orcid.org/0009-0008-6047-6189</orcidid><orcidid>https://orcid.org/0000-0002-1664-8763</orcidid><orcidid>https://orcid.org/0000-0002-3251-2524</orcidid><orcidid>https://orcid.org/0000-0002-9208-5501</orcidid><orcidid>https://orcid.org/0000-0003-2932-4298</orcidid><orcidid>https://orcid.org/0000-0001-9123-8521</orcidid><orcidid>https://orcid.org/0000-0001-6294-4267</orcidid></search><sort><creationdate>20240801</creationdate><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><author>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattila, Aleksi</creatorcontrib><creatorcontrib>Nysten, Johan</creatorcontrib><creatorcontrib>Heikkinen, Ville</creatorcontrib><creatorcontrib>Kilpi, Jorma</creatorcontrib><creatorcontrib>Korpelainen, Virpi</creatorcontrib><creatorcontrib>Hansen, Poul-Erik</creatorcontrib><creatorcontrib>Karvinen, Petri</creatorcontrib><creatorcontrib>Kuittinen, Markku</creatorcontrib><creatorcontrib>Lassila, Antti</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattila, Aleksi</au><au>Nysten, Johan</au><au>Heikkinen, Ville</au><au>Kilpi, Jorma</au><au>Korpelainen, Virpi</au><au>Hansen, Poul-Erik</au><au>Karvinen, Petri</au><au>Kuittinen, Markku</au><au>Lassila, Antti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network assisted spectral scatterometry for grating quality control</atitle><jtitle>Measurement science & technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>85025</spage><pages>85025-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty (
k
= 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</abstract><doi>10.1088/1361-6501/ad4e52</doi><orcidid>https://orcid.org/0000-0002-5334-6844</orcidid><orcidid>https://orcid.org/0000-0002-6991-7082</orcidid><orcidid>https://orcid.org/0009-0008-6047-6189</orcidid><orcidid>https://orcid.org/0000-0002-1664-8763</orcidid><orcidid>https://orcid.org/0000-0002-3251-2524</orcidid><orcidid>https://orcid.org/0000-0002-9208-5501</orcidid><orcidid>https://orcid.org/0000-0003-2932-4298</orcidid><orcidid>https://orcid.org/0000-0001-9123-8521</orcidid><orcidid>https://orcid.org/0000-0001-6294-4267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2024-08, Vol.35 (8), p.85025 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_ad4e52 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Artificial neural network assisted spectral scatterometry for grating quality control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20assisted%20spectral%20scatterometry%20for%20grating%20quality%20control&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Mattila,%20Aleksi&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=85025&rft.pages=85025-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad4e52&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad4e52%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |