Artificial neural network assisted spectral scatterometry for grating quality control

Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-08, Vol.35 (8), p.85025
Hauptverfasser: Mattila, Aleksi, Nysten, Johan, Heikkinen, Ville, Kilpi, Jorma, Korpelainen, Virpi, Hansen, Poul-Erik, Karvinen, Petri, Kuittinen, Markku, Lassila, Antti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85025
container_title Measurement science & technology
container_volume 35
creator Mattila, Aleksi
Nysten, Johan
Heikkinen, Ville
Kilpi, Jorma
Korpelainen, Virpi
Hansen, Poul-Erik
Karvinen, Petri
Kuittinen, Markku
Lassila, Antti
description Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty ( k  = 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.
doi_str_mv 10.1088/1361-6501/ad4e52
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad4e52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad4e52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoOFb3LvMHxr5MMplkWYpfUHBj1yFmXkp0OqlJisy_17Hi6sC9l7s4hNwyuGOg1JJxyWrZAlvaXmDbnJHqPzonFei2q6Hh_JJc5fwOAB1oXZHtKpXggwt2oCMe0y_KV0wf1OYccsGe5gO6MjfZ2VIwxT2WNFEfE90lW8K4o59HO4QyURfHkuJwTS68HTLe_HFBtg_3r-unevPy-LxebWrHpCo1ggCvpNBoXSu10FK8eesZsM4xBah6p3mLPThU0OiGdwAMRAM99D_jji8InH5dijkn9OaQwt6myTAwsxYzOzCzA3PSwr8BHFJXXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</creator><creatorcontrib>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</creatorcontrib><description>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty ( k  = 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad4e52</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-08, Vol.35 (8), p.85025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</cites><orcidid>0000-0002-5334-6844 ; 0000-0002-6991-7082 ; 0009-0008-6047-6189 ; 0000-0002-1664-8763 ; 0000-0002-3251-2524 ; 0000-0002-9208-5501 ; 0000-0003-2932-4298 ; 0000-0001-9123-8521 ; 0000-0001-6294-4267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mattila, Aleksi</creatorcontrib><creatorcontrib>Nysten, Johan</creatorcontrib><creatorcontrib>Heikkinen, Ville</creatorcontrib><creatorcontrib>Kilpi, Jorma</creatorcontrib><creatorcontrib>Korpelainen, Virpi</creatorcontrib><creatorcontrib>Hansen, Poul-Erik</creatorcontrib><creatorcontrib>Karvinen, Petri</creatorcontrib><creatorcontrib>Kuittinen, Markku</creatorcontrib><creatorcontrib>Lassila, Antti</creatorcontrib><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><title>Measurement science &amp; technology</title><description>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty ( k  = 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoOFb3LvMHxr5MMplkWYpfUHBj1yFmXkp0OqlJisy_17Hi6sC9l7s4hNwyuGOg1JJxyWrZAlvaXmDbnJHqPzonFei2q6Hh_JJc5fwOAB1oXZHtKpXggwt2oCMe0y_KV0wf1OYccsGe5gO6MjfZ2VIwxT2WNFEfE90lW8K4o59HO4QyURfHkuJwTS68HTLe_HFBtg_3r-unevPy-LxebWrHpCo1ggCvpNBoXSu10FK8eesZsM4xBah6p3mLPThU0OiGdwAMRAM99D_jji8InH5dijkn9OaQwt6myTAwsxYzOzCzA3PSwr8BHFJXXw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Mattila, Aleksi</creator><creator>Nysten, Johan</creator><creator>Heikkinen, Ville</creator><creator>Kilpi, Jorma</creator><creator>Korpelainen, Virpi</creator><creator>Hansen, Poul-Erik</creator><creator>Karvinen, Petri</creator><creator>Kuittinen, Markku</creator><creator>Lassila, Antti</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5334-6844</orcidid><orcidid>https://orcid.org/0000-0002-6991-7082</orcidid><orcidid>https://orcid.org/0009-0008-6047-6189</orcidid><orcidid>https://orcid.org/0000-0002-1664-8763</orcidid><orcidid>https://orcid.org/0000-0002-3251-2524</orcidid><orcidid>https://orcid.org/0000-0002-9208-5501</orcidid><orcidid>https://orcid.org/0000-0003-2932-4298</orcidid><orcidid>https://orcid.org/0000-0001-9123-8521</orcidid><orcidid>https://orcid.org/0000-0001-6294-4267</orcidid></search><sort><creationdate>20240801</creationdate><title>Artificial neural network assisted spectral scatterometry for grating quality control</title><author>Mattila, Aleksi ; Nysten, Johan ; Heikkinen, Ville ; Kilpi, Jorma ; Korpelainen, Virpi ; Hansen, Poul-Erik ; Karvinen, Petri ; Kuittinen, Markku ; Lassila, Antti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c168t-e040f8649eac5694964bfaf1017c180e8dc935ed0ce80292370010420d0d49673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattila, Aleksi</creatorcontrib><creatorcontrib>Nysten, Johan</creatorcontrib><creatorcontrib>Heikkinen, Ville</creatorcontrib><creatorcontrib>Kilpi, Jorma</creatorcontrib><creatorcontrib>Korpelainen, Virpi</creatorcontrib><creatorcontrib>Hansen, Poul-Erik</creatorcontrib><creatorcontrib>Karvinen, Petri</creatorcontrib><creatorcontrib>Kuittinen, Markku</creatorcontrib><creatorcontrib>Lassila, Antti</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattila, Aleksi</au><au>Nysten, Johan</au><au>Heikkinen, Ville</au><au>Kilpi, Jorma</au><au>Korpelainen, Virpi</au><au>Hansen, Poul-Erik</au><au>Karvinen, Petri</au><au>Kuittinen, Markku</au><au>Lassila, Antti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network assisted spectral scatterometry for grating quality control</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>85025</spage><pages>85025-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Spectral scatterometry is a technique that allows rapid measurements of diffraction efficiencies of diffractive optical elements (DOEs). The analysis of such diffraction efficiencies has traditionally been laborious and time consuming. However, machine learning can be employed to aid in the analysis of measured diffraction efficiencies. In this paper we describe a novel system for providing measurements of multiple measurands rapidly and concurrently using a spectral scatterometer and an artificial neural network (ANN) which is trained utilising transfer learning. The ANN provides values for the pitch, height, and line widths of the DOEs. In addition, an uncertainty evaluation was performed. In the majority of the studied cases, the discrepancies between the values obtained using a scanning electron microscope (SEM) and artificial neural network assisted spectral scatterometer (ANNASS) for the grating parameters were below 5 nm. Furthermore, independent reference samples were used to perform a metrological validation. An expanded uncertainty ( k  = 2) of 5.3 nm was obtained from the uncertainty evaluation for the measurand height. The height value measurements performed employing ANNASS and SEM are demonstrated to be in agreement within this uncertainty.</abstract><doi>10.1088/1361-6501/ad4e52</doi><orcidid>https://orcid.org/0000-0002-5334-6844</orcidid><orcidid>https://orcid.org/0000-0002-6991-7082</orcidid><orcidid>https://orcid.org/0009-0008-6047-6189</orcidid><orcidid>https://orcid.org/0000-0002-1664-8763</orcidid><orcidid>https://orcid.org/0000-0002-3251-2524</orcidid><orcidid>https://orcid.org/0000-0002-9208-5501</orcidid><orcidid>https://orcid.org/0000-0003-2932-4298</orcidid><orcidid>https://orcid.org/0000-0001-9123-8521</orcidid><orcidid>https://orcid.org/0000-0001-6294-4267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-08, Vol.35 (8), p.85025
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad4e52
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Artificial neural network assisted spectral scatterometry for grating quality control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20assisted%20spectral%20scatterometry%20for%20grating%20quality%20control&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Mattila,%20Aleksi&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=85025&rft.pages=85025-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad4e52&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad4e52%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true