Blade fouling fault detection based on shaft orbit generative adversarial network

To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-08, Vol.35 (8), p.86119
Hauptverfasser: Huang, Xin, Ma, Jun, Shao, Huajin, Chen, Wenwu, Qu, Dingrong, Pan, Long, Zhang, Weiya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 86119
container_title Measurement science & technology
container_volume 35
creator Huang, Xin
Ma, Jun
Shao, Huajin
Chen, Wenwu
Qu, Dingrong
Pan, Long
Zhang, Weiya
description To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.
doi_str_mv 10.1088/1361-6501/ad4732
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad4732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad4732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWEf3LvMH6rw0bZMsdfALBkTQdXhpXsZqbSXJjPjvnTLi6h7u4sK5jF0KuBKg9VLIVpRtA2KJvlayOmLFf3XMCjCNKqGS8pSdpfQOAAqMKdjzzYCeeJi2Qz9ueMDtkLmnTF3up5E7TOT5HtIbhsyn6PrMNzRSxNzviKPfUUwYexz4SPl7ih_n7CTgkOjiLxfs9e72ZfVQrp_uH1fX67ITps1l61EpEk5LJRUojy3uoSJtPDUiOKqN67z2rtaiVgSqUaIV3htH2kGQcsHgsNvFKaVIwX7F_hPjjxVg50vs7G9nf3u4RP4CzTRVuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</creator><creatorcontrib>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</creatorcontrib><description>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad4732</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-08, Vol.35 (8), p.86119</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</cites><orcidid>0000-0001-5987-8625 ; 0000-0002-2313-8104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Shao, Huajin</creatorcontrib><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Zhang, Weiya</creatorcontrib><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><title>Measurement science &amp; technology</title><description>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAURYMoWEf3LvMH6rw0bZMsdfALBkTQdXhpXsZqbSXJjPjvnTLi6h7u4sK5jF0KuBKg9VLIVpRtA2KJvlayOmLFf3XMCjCNKqGS8pSdpfQOAAqMKdjzzYCeeJi2Qz9ueMDtkLmnTF3up5E7TOT5HtIbhsyn6PrMNzRSxNzviKPfUUwYexz4SPl7ih_n7CTgkOjiLxfs9e72ZfVQrp_uH1fX67ITps1l61EpEk5LJRUojy3uoSJtPDUiOKqN67z2rtaiVgSqUaIV3htH2kGQcsHgsNvFKaVIwX7F_hPjjxVg50vs7G9nf3u4RP4CzTRVuQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Huang, Xin</creator><creator>Ma, Jun</creator><creator>Shao, Huajin</creator><creator>Chen, Wenwu</creator><creator>Qu, Dingrong</creator><creator>Pan, Long</creator><creator>Zhang, Weiya</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5987-8625</orcidid><orcidid>https://orcid.org/0000-0002-2313-8104</orcidid></search><sort><creationdate>20240801</creationdate><title>Blade fouling fault detection based on shaft orbit generative adversarial network</title><author>Huang, Xin ; Ma, Jun ; Shao, Huajin ; Chen, Wenwu ; Qu, Dingrong ; Pan, Long ; Zhang, Weiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-6da77e1b8373707da6a7372e89de51fbe49bcd8db48147e0757161dd9be8b0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Shao, Huajin</creatorcontrib><creatorcontrib>Chen, Wenwu</creatorcontrib><creatorcontrib>Qu, Dingrong</creatorcontrib><creatorcontrib>Pan, Long</creatorcontrib><creatorcontrib>Zhang, Weiya</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xin</au><au>Ma, Jun</au><au>Shao, Huajin</au><au>Chen, Wenwu</au><au>Qu, Dingrong</au><au>Pan, Long</au><au>Zhang, Weiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blade fouling fault detection based on shaft orbit generative adversarial network</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>86119</spage><pages>86119-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>To address the challenges of accuracy and interpretability in mechanical fault detection models, this study proposes a shaft orbit generative adversarial network (SOGAN) and applies it to detect blade fouling faults. Variational autoencoder (VAE) is used as the foundational network architecture for extracting high-dimensional latent features from the shaft orbit images. Concurrently, the invariant moments of the shaft orbit images are extracted and embedded in a bypass within the generator, thereby enhancing the accuracy of fault detection. Two sets of real-world blade fouling fault data are collected and meticulously analyzed. The proposed SOGAN model demonstrates significant performance improvements, with average increases of 18.91%, 10.20%, and 26.79% in accuracy compared to the autoencoder, VAE, and GANomaly algorithms, respectively. The F1 scores for both the groups exceed 0.98. The data generated by the proposed SOGAN model exhibit a trend-wise correspondence with the finite element modeling data. In addition, the use of gradient information for the localization and visual analysis of anomalies dynamically tracks the spatial evolution of the rotor shaft orbit throughout its lifecycle. The data generation capability and interpretability of the proposed model can effectively support digital twin modeling and health management of rotating machinery.</abstract><doi>10.1088/1361-6501/ad4732</doi><orcidid>https://orcid.org/0000-0001-5987-8625</orcidid><orcidid>https://orcid.org/0000-0002-2313-8104</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-08, Vol.35 (8), p.86119
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad4732
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Blade fouling fault detection based on shaft orbit generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blade%20fouling%20fault%20detection%20based%20on%20shaft%20orbit%20generative%20adversarial%20network&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Huang,%20Xin&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=86119&rft.pages=86119-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad4732&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad4732%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true