A pipeline corrosion detecting method using percussion and residual neural network

Corrosion of pipeline walls can lead to serious safety accidents such as leaks, fires and even explosions. This paper proposes a corrosion detection method using deep learning based on percussion sound for pipelines. The percussion induced acoustic signals are processed by wavelet threshold noise re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-08, Vol.35 (8), p.86009
Hauptverfasser: Yang, Dan, Ji, Songlin, Wang, Tao, Shu, XianTao, Lu, Guangtao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 86009
container_title Measurement science & technology
container_volume 35
creator Yang, Dan
Ji, Songlin
Wang, Tao
Shu, XianTao
Lu, Guangtao
description Corrosion of pipeline walls can lead to serious safety accidents such as leaks, fires and even explosions. This paper proposes a corrosion detection method using deep learning based on percussion sound for pipelines. The percussion induced acoustic signals are processed by wavelet threshold noise reduction and double threshold endpoint detection to generate the Mel spectrograms, and then an 18-layer residual network (ResNet18) is used to mine the depth information and classify the degree of pipeline corrosion. We conducted experiments to verify the validity of the approach. Seven working conditions are generated by electrochemical corrosion of a pipe specimen, and percussions are applied at five different positions under the same working conditions to collect the impact acoustic signals. The test results show that the method can quickly, efficiently and accurately detect the degree of pipeline corrosion, classify the degree of pipe corrosion without being affected by the striking position Therefore, the model has great potential for application in detecting the internal corrosion of pipelines based on percussion sounds.
doi_str_mv 10.1088/1361-6501/ad461f
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad461f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad461f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-2ea761542174a0020de5b41c7e8d1d49b7a5cbaba699119881a560de30848bbf3</originalsourceid><addsrcrecordid>eNo9kFtLw0AUhBdRMFbffdw_EHtONtnLYyleCgVB9Dns5USjbRJ2E8R_b9OKT8MMwzB8jN0i3CFovUQhMZcV4NKGUmJzxrL_6JxlYCqVQyHEJbtK6RMAFBiTsZcVH9qBdm1H3Pcx9qntOx5oJD-23Tvf0_jRBz6l2QwU_ZSODdsFHim1YbI73tEUjzJ-9_Hrml00dpfo5k8X7O3h_nX9lG-fHzfr1Tb3aOSYF2SVxKosUJUWoIBAlSvRK9IBQ2mcspV31llpDKLRGm0lDyUButTONWLB4LTrD69TpKYeYru38adGqGcm9QygngHUJybiF4fTVlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A pipeline corrosion detecting method using percussion and residual neural network</title><source>Institute of Physics Journals</source><creator>Yang, Dan ; Ji, Songlin ; Wang, Tao ; Shu, XianTao ; Lu, Guangtao</creator><creatorcontrib>Yang, Dan ; Ji, Songlin ; Wang, Tao ; Shu, XianTao ; Lu, Guangtao</creatorcontrib><description>Corrosion of pipeline walls can lead to serious safety accidents such as leaks, fires and even explosions. This paper proposes a corrosion detection method using deep learning based on percussion sound for pipelines. The percussion induced acoustic signals are processed by wavelet threshold noise reduction and double threshold endpoint detection to generate the Mel spectrograms, and then an 18-layer residual network (ResNet18) is used to mine the depth information and classify the degree of pipeline corrosion. We conducted experiments to verify the validity of the approach. Seven working conditions are generated by electrochemical corrosion of a pipe specimen, and percussions are applied at five different positions under the same working conditions to collect the impact acoustic signals. The test results show that the method can quickly, efficiently and accurately detect the degree of pipeline corrosion, classify the degree of pipe corrosion without being affected by the striking position Therefore, the model has great potential for application in detecting the internal corrosion of pipelines based on percussion sounds.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad461f</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-08, Vol.35 (8), p.86009</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-2ea761542174a0020de5b41c7e8d1d49b7a5cbaba699119881a560de30848bbf3</cites><orcidid>0009-0003-1764-4013 ; 0009-0008-1395-8206 ; 0000-0001-8074-535X ; 0000-0002-6505-6916 ; 0000-0003-4591-0123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Ji, Songlin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shu, XianTao</creatorcontrib><creatorcontrib>Lu, Guangtao</creatorcontrib><title>A pipeline corrosion detecting method using percussion and residual neural network</title><title>Measurement science &amp; technology</title><description>Corrosion of pipeline walls can lead to serious safety accidents such as leaks, fires and even explosions. This paper proposes a corrosion detection method using deep learning based on percussion sound for pipelines. The percussion induced acoustic signals are processed by wavelet threshold noise reduction and double threshold endpoint detection to generate the Mel spectrograms, and then an 18-layer residual network (ResNet18) is used to mine the depth information and classify the degree of pipeline corrosion. We conducted experiments to verify the validity of the approach. Seven working conditions are generated by electrochemical corrosion of a pipe specimen, and percussions are applied at five different positions under the same working conditions to collect the impact acoustic signals. The test results show that the method can quickly, efficiently and accurately detect the degree of pipeline corrosion, classify the degree of pipe corrosion without being affected by the striking position Therefore, the model has great potential for application in detecting the internal corrosion of pipelines based on percussion sounds.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AUhBdRMFbffdw_EHtONtnLYyleCgVB9Dns5USjbRJ2E8R_b9OKT8MMwzB8jN0i3CFovUQhMZcV4NKGUmJzxrL_6JxlYCqVQyHEJbtK6RMAFBiTsZcVH9qBdm1H3Pcx9qntOx5oJD-23Tvf0_jRBz6l2QwU_ZSODdsFHim1YbI73tEUjzJ-9_Hrml00dpfo5k8X7O3h_nX9lG-fHzfr1Tb3aOSYF2SVxKosUJUWoIBAlSvRK9IBQ2mcspV31llpDKLRGm0lDyUButTONWLB4LTrD69TpKYeYru38adGqGcm9QygngHUJybiF4fTVlQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Yang, Dan</creator><creator>Ji, Songlin</creator><creator>Wang, Tao</creator><creator>Shu, XianTao</creator><creator>Lu, Guangtao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-1764-4013</orcidid><orcidid>https://orcid.org/0009-0008-1395-8206</orcidid><orcidid>https://orcid.org/0000-0001-8074-535X</orcidid><orcidid>https://orcid.org/0000-0002-6505-6916</orcidid><orcidid>https://orcid.org/0000-0003-4591-0123</orcidid></search><sort><creationdate>20240801</creationdate><title>A pipeline corrosion detecting method using percussion and residual neural network</title><author>Yang, Dan ; Ji, Songlin ; Wang, Tao ; Shu, XianTao ; Lu, Guangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-2ea761542174a0020de5b41c7e8d1d49b7a5cbaba699119881a560de30848bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Ji, Songlin</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Shu, XianTao</creatorcontrib><creatorcontrib>Lu, Guangtao</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Dan</au><au>Ji, Songlin</au><au>Wang, Tao</au><au>Shu, XianTao</au><au>Lu, Guangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pipeline corrosion detecting method using percussion and residual neural network</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>35</volume><issue>8</issue><spage>86009</spage><pages>86009-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Corrosion of pipeline walls can lead to serious safety accidents such as leaks, fires and even explosions. This paper proposes a corrosion detection method using deep learning based on percussion sound for pipelines. The percussion induced acoustic signals are processed by wavelet threshold noise reduction and double threshold endpoint detection to generate the Mel spectrograms, and then an 18-layer residual network (ResNet18) is used to mine the depth information and classify the degree of pipeline corrosion. We conducted experiments to verify the validity of the approach. Seven working conditions are generated by electrochemical corrosion of a pipe specimen, and percussions are applied at five different positions under the same working conditions to collect the impact acoustic signals. The test results show that the method can quickly, efficiently and accurately detect the degree of pipeline corrosion, classify the degree of pipe corrosion without being affected by the striking position Therefore, the model has great potential for application in detecting the internal corrosion of pipelines based on percussion sounds.</abstract><doi>10.1088/1361-6501/ad461f</doi><orcidid>https://orcid.org/0009-0003-1764-4013</orcidid><orcidid>https://orcid.org/0009-0008-1395-8206</orcidid><orcidid>https://orcid.org/0000-0001-8074-535X</orcidid><orcidid>https://orcid.org/0000-0002-6505-6916</orcidid><orcidid>https://orcid.org/0000-0003-4591-0123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-08, Vol.35 (8), p.86009
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad461f
source Institute of Physics Journals
title A pipeline corrosion detecting method using percussion and residual neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pipeline%20corrosion%20detecting%20method%20using%20percussion%20and%20residual%20neural%20network&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Yang,%20Dan&rft.date=2024-08-01&rft.volume=35&rft.issue=8&rft.spage=86009&rft.pages=86009-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad461f&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad461f%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true