Improve exploration in deep reinforcement learning for UAV path planning using state and action entropy
Despite being a widely adopted development framework for unmanned aerial vehicle (UAV), deep reinforcement learning is often considered sample inefficient. Particularly, UAV struggles to fully explore the state and action space in environments with sparse rewards. While some exploration algorithms h...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2024-05, Vol.35 (5), p.56206 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!