Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition

Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automaticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-04, Vol.35 (4), p.42001
Hauptverfasser: Han, Rui, Wang, Jinrui, Wan, Yanbin, Bao, Jihua, Jiang, Xue, Zhang, Zongzhen, Han, Baokun, Ji, Shanshan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 42001
container_title Measurement science & technology
container_volume 35
creator Han, Rui
Wang, Jinrui
Wan, Yanbin
Bao, Jihua
Jiang, Xue
Zhang, Zongzhen
Han, Baokun
Ji, Shanshan
description Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automatically extract useful features has begun to attract widespread attention in the field of mechanical intelligent fault diagnosis. Combining the advantages of attention mechanism and unsupervised learning, this paper proposes a squeeze-excitation attention guided sparse filtering (SESF) method for mechanical intelligent fault diagnosis method under variable speed. Firstly, the squeeze-excitation attention mechanism is embedded in sparse filtering algorithm to guide model training. Then, unsupervised feature extraction is carried out on multi-scale inputs from the variable speed signal samples. The training results are adaptively screened and weighted to make the model pay more attention to the region with the most classify discrimination, so as to improve the feature extraction ability of the model to obtain useful information. Finally, two sets of gear and bearing tests under variable speed condition are adopted to testify the performance of the proposed method. The experimental results show that the SESF method can overcome the influence of variable speed to achieve accurate recognition of different mechanical faults and is superior to the other methods.
doi_str_mv 10.1088/1361-6501/ad197a
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad197a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad197a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-c90f96502c4c5e414db18acb8fccd9e8e2cdeb7b99317001c89e83eacdf021b43</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7ePeYP1J003W1zXBa_YMGLnks6mdRINl2SVPDf27K6p4GXeZ9hHsbuBTwIaJqVkBtRbNYgVtoIVesLtjhHl2wBal0XUEp5zW5S-gKAGpRasHGbM4XshsAPhJ86uHTg_egMGZ6OOibi1vlM0YWe2yH-b6H23IVM3rt-6nOrR5-5cboPQ3KJj8FQ5N86Ot15mlA0AXEIxs23btmV1T7R3d9cso-nx_fdS7F_e37dbfcFlpXMBSqwanqgxArXVInKdKLR2DUW0ShqqERDXd0pJUUNILCZQkkajYVSdJVcMjhxMQ4pRbLtMbqDjj-tgHbW1s6O2tlRe9ImfwEd8WT6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Han, Rui ; Wang, Jinrui ; Wan, Yanbin ; Bao, Jihua ; Jiang, Xue ; Zhang, Zongzhen ; Han, Baokun ; Ji, Shanshan</creator><creatorcontrib>Han, Rui ; Wang, Jinrui ; Wan, Yanbin ; Bao, Jihua ; Jiang, Xue ; Zhang, Zongzhen ; Han, Baokun ; Ji, Shanshan</creatorcontrib><description>Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automatically extract useful features has begun to attract widespread attention in the field of mechanical intelligent fault diagnosis. Combining the advantages of attention mechanism and unsupervised learning, this paper proposes a squeeze-excitation attention guided sparse filtering (SESF) method for mechanical intelligent fault diagnosis method under variable speed. Firstly, the squeeze-excitation attention mechanism is embedded in sparse filtering algorithm to guide model training. Then, unsupervised feature extraction is carried out on multi-scale inputs from the variable speed signal samples. The training results are adaptively screened and weighted to make the model pay more attention to the region with the most classify discrimination, so as to improve the feature extraction ability of the model to obtain useful information. Finally, two sets of gear and bearing tests under variable speed condition are adopted to testify the performance of the proposed method. The experimental results show that the SESF method can overcome the influence of variable speed to achieve accurate recognition of different mechanical faults and is superior to the other methods.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad197a</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-04, Vol.35 (4), p.42001</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-c90f96502c4c5e414db18acb8fccd9e8e2cdeb7b99317001c89e83eacdf021b43</citedby><cites>FETCH-LOGICAL-c243t-c90f96502c4c5e414db18acb8fccd9e8e2cdeb7b99317001c89e83eacdf021b43</cites><orcidid>0000-0002-2022-2116 ; 0000-0001-8690-0672 ; 0000-0001-7367-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Rui</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Wan, Yanbin</creatorcontrib><creatorcontrib>Bao, Jihua</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Ji, Shanshan</creatorcontrib><title>Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition</title><title>Measurement science &amp; technology</title><description>Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automatically extract useful features has begun to attract widespread attention in the field of mechanical intelligent fault diagnosis. Combining the advantages of attention mechanism and unsupervised learning, this paper proposes a squeeze-excitation attention guided sparse filtering (SESF) method for mechanical intelligent fault diagnosis method under variable speed. Firstly, the squeeze-excitation attention mechanism is embedded in sparse filtering algorithm to guide model training. Then, unsupervised feature extraction is carried out on multi-scale inputs from the variable speed signal samples. The training results are adaptively screened and weighted to make the model pay more attention to the region with the most classify discrimination, so as to improve the feature extraction ability of the model to obtain useful information. Finally, two sets of gear and bearing tests under variable speed condition are adopted to testify the performance of the proposed method. The experimental results show that the SESF method can overcome the influence of variable speed to achieve accurate recognition of different mechanical faults and is superior to the other methods.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7ePeYP1J003W1zXBa_YMGLnks6mdRINl2SVPDf27K6p4GXeZ9hHsbuBTwIaJqVkBtRbNYgVtoIVesLtjhHl2wBal0XUEp5zW5S-gKAGpRasHGbM4XshsAPhJ86uHTg_egMGZ6OOibi1vlM0YWe2yH-b6H23IVM3rt-6nOrR5-5cboPQ3KJj8FQ5N86Ot15mlA0AXEIxs23btmV1T7R3d9cso-nx_fdS7F_e37dbfcFlpXMBSqwanqgxArXVInKdKLR2DUW0ShqqERDXd0pJUUNILCZQkkajYVSdJVcMjhxMQ4pRbLtMbqDjj-tgHbW1s6O2tlRe9ImfwEd8WT6</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Han, Rui</creator><creator>Wang, Jinrui</creator><creator>Wan, Yanbin</creator><creator>Bao, Jihua</creator><creator>Jiang, Xue</creator><creator>Zhang, Zongzhen</creator><creator>Han, Baokun</creator><creator>Ji, Shanshan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2022-2116</orcidid><orcidid>https://orcid.org/0000-0001-8690-0672</orcidid><orcidid>https://orcid.org/0000-0001-7367-6253</orcidid></search><sort><creationdate>20240401</creationdate><title>Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition</title><author>Han, Rui ; Wang, Jinrui ; Wan, Yanbin ; Bao, Jihua ; Jiang, Xue ; Zhang, Zongzhen ; Han, Baokun ; Ji, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-c90f96502c4c5e414db18acb8fccd9e8e2cdeb7b99317001c89e83eacdf021b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Rui</creatorcontrib><creatorcontrib>Wang, Jinrui</creatorcontrib><creatorcontrib>Wan, Yanbin</creatorcontrib><creatorcontrib>Bao, Jihua</creatorcontrib><creatorcontrib>Jiang, Xue</creatorcontrib><creatorcontrib>Zhang, Zongzhen</creatorcontrib><creatorcontrib>Han, Baokun</creatorcontrib><creatorcontrib>Ji, Shanshan</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Rui</au><au>Wang, Jinrui</au><au>Wan, Yanbin</au><au>Bao, Jihua</au><au>Jiang, Xue</au><au>Zhang, Zongzhen</au><au>Han, Baokun</au><au>Ji, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>42001</spage><pages>42001-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Variable speed is one of the common working conditions of mechanical equipment, which poses an important challenge to equipment fault diagnosis. The current solutions have the shortcomings of low computational efficiency and large diagnostic errors. The ability of attention mechanism to automatically extract useful features has begun to attract widespread attention in the field of mechanical intelligent fault diagnosis. Combining the advantages of attention mechanism and unsupervised learning, this paper proposes a squeeze-excitation attention guided sparse filtering (SESF) method for mechanical intelligent fault diagnosis method under variable speed. Firstly, the squeeze-excitation attention mechanism is embedded in sparse filtering algorithm to guide model training. Then, unsupervised feature extraction is carried out on multi-scale inputs from the variable speed signal samples. The training results are adaptively screened and weighted to make the model pay more attention to the region with the most classify discrimination, so as to improve the feature extraction ability of the model to obtain useful information. Finally, two sets of gear and bearing tests under variable speed condition are adopted to testify the performance of the proposed method. The experimental results show that the SESF method can overcome the influence of variable speed to achieve accurate recognition of different mechanical faults and is superior to the other methods.</abstract><doi>10.1088/1361-6501/ad197a</doi><orcidid>https://orcid.org/0000-0002-2022-2116</orcidid><orcidid>https://orcid.org/0000-0001-8690-0672</orcidid><orcidid>https://orcid.org/0000-0001-7367-6253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-04, Vol.35 (4), p.42001
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad197a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Attention mechanism guided sparse filtering for mechanical intelligent fault diagnosis under variable speed condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20mechanism%20guided%20sparse%20filtering%20for%20mechanical%20intelligent%20fault%20diagnosis%20under%20variable%20speed%20condition&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Han,%20Rui&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=42001&rft.pages=42001-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad197a&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad197a%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true