Study of interferometric signal correction methods in ultra-precision displacement measurement

The measurement of critical dimensions in the field of integrated circuits has moved from 7 nm to 5 nm. The existing chromium atomic lithography grating has a pitch period of 4700 l mm −1 and uniformity of picometer, and the interferometric signal period based on the above grating is as small as 106...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-03, Vol.35 (3), p.35027
Hauptverfasser: Xie, Zhangning, Jin, Tao, Lei, Lihua, Lin, Zichao, Yao, Yulin, Xue, Dongbai, Dun, Xiong, Deng, Xiao, Cheng, Xinbin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35027
container_title Measurement science & technology
container_volume 35
creator Xie, Zhangning
Jin, Tao
Lei, Lihua
Lin, Zichao
Yao, Yulin
Xue, Dongbai
Dun, Xiong
Deng, Xiao
Cheng, Xinbin
description The measurement of critical dimensions in the field of integrated circuits has moved from 7 nm to 5 nm. The existing chromium atomic lithography grating has a pitch period of 4700 l mm −1 and uniformity of picometer, and the interferometric signal period based on the above grating is as small as 106.4 nm, which brings new problems and challenges to the accurate processing of the signal. This paper investigates the error characteristics of ultra-high precision grating interferometric signals, establishes a Heydemann correction mathematical model for high inscribed line density grating interferometric signals, corrects the grating interferometer signals based on the random sample consensus (RANSAC), and verifies the effectiveness of the algorithm through simulation. By comparing the repeatability and linearity of the original algorithm and the self-traceable grating interferometric displacement measurement data processed by RANSAC, the conclusion that the standard deviation of the self-traceable grating interferometer repeat measurement after RANSAC is 1.60 nm in a 10 000 nm travel is obtained, and the purpose of improving the stability and uniformity of the signal solution with the algorithm of this paper is achieved, which is important for the study of laser interferometer and grating interferometer The results show that the stability and uniformity of the signal solution can be improved by the algorithm of this paper, which is of great significance for the study of the displacement solution of laser and grating interferometers.
doi_str_mv 10.1088/1361-6501/ad179b
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ad179b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ad179b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-8f54248560466ebe3b682413bfbe1924480a8847e2634e86425e673569b853683</originalsourceid><addsrcrecordid>eNo9kLtOxDAQRS0EEmGhp8wPhB0_45RoxWOllSiAlsh2JmCUl2yn2L8nYRHVXM25usUh5JbCHQWtt5QrWigJdGsaWlb2jGT_r3OSQSXLAhjnl-Qqxm8AKKGqMvLxmubmmI9t7oeEocUw9piCd3n0n4PpcjeGgC75ccgX8DU2cWnmc5eCKaaF-LiixsepMw57HNLSM3EOv_maXLSmi3jzdzfk_fHhbfdcHF6e9rv7Q-GY4KnQrRRMaKlAKIUWuVWaCcpta5FWTAgNRmtRIlNcoFaCSVQll6qyWnKl-YbAadeFMcaAbT0F35twrCnUq596lVGvMuqTH_4DipNaCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study of interferometric signal correction methods in ultra-precision displacement measurement</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xie, Zhangning ; Jin, Tao ; Lei, Lihua ; Lin, Zichao ; Yao, Yulin ; Xue, Dongbai ; Dun, Xiong ; Deng, Xiao ; Cheng, Xinbin</creator><creatorcontrib>Xie, Zhangning ; Jin, Tao ; Lei, Lihua ; Lin, Zichao ; Yao, Yulin ; Xue, Dongbai ; Dun, Xiong ; Deng, Xiao ; Cheng, Xinbin</creatorcontrib><description>The measurement of critical dimensions in the field of integrated circuits has moved from 7 nm to 5 nm. The existing chromium atomic lithography grating has a pitch period of 4700 l mm −1 and uniformity of picometer, and the interferometric signal period based on the above grating is as small as 106.4 nm, which brings new problems and challenges to the accurate processing of the signal. This paper investigates the error characteristics of ultra-high precision grating interferometric signals, establishes a Heydemann correction mathematical model for high inscribed line density grating interferometric signals, corrects the grating interferometer signals based on the random sample consensus (RANSAC), and verifies the effectiveness of the algorithm through simulation. By comparing the repeatability and linearity of the original algorithm and the self-traceable grating interferometric displacement measurement data processed by RANSAC, the conclusion that the standard deviation of the self-traceable grating interferometer repeat measurement after RANSAC is 1.60 nm in a 10 000 nm travel is obtained, and the purpose of improving the stability and uniformity of the signal solution with the algorithm of this paper is achieved, which is important for the study of laser interferometer and grating interferometer The results show that the stability and uniformity of the signal solution can be improved by the algorithm of this paper, which is of great significance for the study of the displacement solution of laser and grating interferometers.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ad179b</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2024-03, Vol.35 (3), p.35027</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-8f54248560466ebe3b682413bfbe1924480a8847e2634e86425e673569b853683</citedby><cites>FETCH-LOGICAL-c243t-8f54248560466ebe3b682413bfbe1924480a8847e2634e86425e673569b853683</cites><orcidid>0000-0002-3855-483X ; 0000-0002-5956-6880 ; 0000-0002-5318-4363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xie, Zhangning</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Lei, Lihua</creatorcontrib><creatorcontrib>Lin, Zichao</creatorcontrib><creatorcontrib>Yao, Yulin</creatorcontrib><creatorcontrib>Xue, Dongbai</creatorcontrib><creatorcontrib>Dun, Xiong</creatorcontrib><creatorcontrib>Deng, Xiao</creatorcontrib><creatorcontrib>Cheng, Xinbin</creatorcontrib><title>Study of interferometric signal correction methods in ultra-precision displacement measurement</title><title>Measurement science &amp; technology</title><description>The measurement of critical dimensions in the field of integrated circuits has moved from 7 nm to 5 nm. The existing chromium atomic lithography grating has a pitch period of 4700 l mm −1 and uniformity of picometer, and the interferometric signal period based on the above grating is as small as 106.4 nm, which brings new problems and challenges to the accurate processing of the signal. This paper investigates the error characteristics of ultra-high precision grating interferometric signals, establishes a Heydemann correction mathematical model for high inscribed line density grating interferometric signals, corrects the grating interferometer signals based on the random sample consensus (RANSAC), and verifies the effectiveness of the algorithm through simulation. By comparing the repeatability and linearity of the original algorithm and the self-traceable grating interferometric displacement measurement data processed by RANSAC, the conclusion that the standard deviation of the self-traceable grating interferometer repeat measurement after RANSAC is 1.60 nm in a 10 000 nm travel is obtained, and the purpose of improving the stability and uniformity of the signal solution with the algorithm of this paper is achieved, which is important for the study of laser interferometer and grating interferometer The results show that the stability and uniformity of the signal solution can be improved by the algorithm of this paper, which is of great significance for the study of the displacement solution of laser and grating interferometers.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOxDAQRS0EEmGhp8wPhB0_45RoxWOllSiAlsh2JmCUl2yn2L8nYRHVXM25usUh5JbCHQWtt5QrWigJdGsaWlb2jGT_r3OSQSXLAhjnl-Qqxm8AKKGqMvLxmubmmI9t7oeEocUw9piCd3n0n4PpcjeGgC75ccgX8DU2cWnmc5eCKaaF-LiixsepMw57HNLSM3EOv_maXLSmi3jzdzfk_fHhbfdcHF6e9rv7Q-GY4KnQrRRMaKlAKIUWuVWaCcpta5FWTAgNRmtRIlNcoFaCSVQll6qyWnKl-YbAadeFMcaAbT0F35twrCnUq596lVGvMuqTH_4DipNaCg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Xie, Zhangning</creator><creator>Jin, Tao</creator><creator>Lei, Lihua</creator><creator>Lin, Zichao</creator><creator>Yao, Yulin</creator><creator>Xue, Dongbai</creator><creator>Dun, Xiong</creator><creator>Deng, Xiao</creator><creator>Cheng, Xinbin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3855-483X</orcidid><orcidid>https://orcid.org/0000-0002-5956-6880</orcidid><orcidid>https://orcid.org/0000-0002-5318-4363</orcidid></search><sort><creationdate>20240301</creationdate><title>Study of interferometric signal correction methods in ultra-precision displacement measurement</title><author>Xie, Zhangning ; Jin, Tao ; Lei, Lihua ; Lin, Zichao ; Yao, Yulin ; Xue, Dongbai ; Dun, Xiong ; Deng, Xiao ; Cheng, Xinbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-8f54248560466ebe3b682413bfbe1924480a8847e2634e86425e673569b853683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhangning</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Lei, Lihua</creatorcontrib><creatorcontrib>Lin, Zichao</creatorcontrib><creatorcontrib>Yao, Yulin</creatorcontrib><creatorcontrib>Xue, Dongbai</creatorcontrib><creatorcontrib>Dun, Xiong</creatorcontrib><creatorcontrib>Deng, Xiao</creatorcontrib><creatorcontrib>Cheng, Xinbin</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhangning</au><au>Jin, Tao</au><au>Lei, Lihua</au><au>Lin, Zichao</au><au>Yao, Yulin</au><au>Xue, Dongbai</au><au>Dun, Xiong</au><au>Deng, Xiao</au><au>Cheng, Xinbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of interferometric signal correction methods in ultra-precision displacement measurement</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>35027</spage><pages>35027-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>The measurement of critical dimensions in the field of integrated circuits has moved from 7 nm to 5 nm. The existing chromium atomic lithography grating has a pitch period of 4700 l mm −1 and uniformity of picometer, and the interferometric signal period based on the above grating is as small as 106.4 nm, which brings new problems and challenges to the accurate processing of the signal. This paper investigates the error characteristics of ultra-high precision grating interferometric signals, establishes a Heydemann correction mathematical model for high inscribed line density grating interferometric signals, corrects the grating interferometer signals based on the random sample consensus (RANSAC), and verifies the effectiveness of the algorithm through simulation. By comparing the repeatability and linearity of the original algorithm and the self-traceable grating interferometric displacement measurement data processed by RANSAC, the conclusion that the standard deviation of the self-traceable grating interferometer repeat measurement after RANSAC is 1.60 nm in a 10 000 nm travel is obtained, and the purpose of improving the stability and uniformity of the signal solution with the algorithm of this paper is achieved, which is important for the study of laser interferometer and grating interferometer The results show that the stability and uniformity of the signal solution can be improved by the algorithm of this paper, which is of great significance for the study of the displacement solution of laser and grating interferometers.</abstract><doi>10.1088/1361-6501/ad179b</doi><orcidid>https://orcid.org/0000-0002-3855-483X</orcidid><orcidid>https://orcid.org/0000-0002-5956-6880</orcidid><orcidid>https://orcid.org/0000-0002-5318-4363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2024-03, Vol.35 (3), p.35027
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ad179b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Study of interferometric signal correction methods in ultra-precision displacement measurement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20interferometric%20signal%20correction%20methods%20in%20ultra-precision%20displacement%20measurement&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Xie,%20Zhangning&rft.date=2024-03-01&rft.volume=35&rft.issue=3&rft.spage=35027&rft.pages=35027-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ad179b&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ad179b%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true