A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings
In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method conta...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2023-10, Vol.34 (10), p.105105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 105105 |
container_title | Measurement science & technology |
container_volume | 34 |
creator | Wang, Zhiyuan Guo, Junyu Wang, Jiang Yang, Yulai Dai, Le Huang, Cheng-Geng Wan, Jia-Lun |
description | In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3
σ
criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model. |
doi_str_mv | 10.1088/1361-6501/ace072 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ace072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ace072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKf3XuYP1L1p2qa5HMMvGHij1yVN3myRmswkRQb-eFsnXh04nA94CLllcMegbVeMN6xoamArpRFEeUYW_9Y5WYCsRQEl55fkKqV3ABAg5YJ8r6lBPNABVfTO72ivEhq6RzXkPXXeOK1yiFQHn3IcdXbBU-UNtWocMj3EsPMhuUS_3JQfvcaYlfP5SD9H5bOzc3_u2GkkhmH4_ZjOJk3X5MKqIeHNny7J28P96-ap2L48Pm_W20KXFc8FmoY3EjjrGWCve1ZC1WrNhBXYC4VSWl5xrBAsb4w0XJW1YLVtJfTMyJYvCZx2dQwpRbTdIboPFY8dg26m182ouhlVd6LHfwDcfGay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</creator><creatorcontrib>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</creatorcontrib><description>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3
σ
criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ace072</identifier><language>eng</language><ispartof>Measurement science & technology, 2023-10, Vol.34 (10), p.105105</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</citedby><cites>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</cites><orcidid>0000-0001-9462-9501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Cheng-Geng</creatorcontrib><creatorcontrib>Wan, Jia-Lun</creatorcontrib><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><title>Measurement science & technology</title><description>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3
σ
criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKf3XuYP1L1p2qa5HMMvGHij1yVN3myRmswkRQb-eFsnXh04nA94CLllcMegbVeMN6xoamArpRFEeUYW_9Y5WYCsRQEl55fkKqV3ABAg5YJ8r6lBPNABVfTO72ivEhq6RzXkPXXeOK1yiFQHn3IcdXbBU-UNtWocMj3EsPMhuUS_3JQfvcaYlfP5SD9H5bOzc3_u2GkkhmH4_ZjOJk3X5MKqIeHNny7J28P96-ap2L48Pm_W20KXFc8FmoY3EjjrGWCve1ZC1WrNhBXYC4VSWl5xrBAsb4w0XJW1YLVtJfTMyJYvCZx2dQwpRbTdIboPFY8dg26m182ouhlVd6LHfwDcfGay</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Zhiyuan</creator><creator>Guo, Junyu</creator><creator>Wang, Jiang</creator><creator>Yang, Yulai</creator><creator>Dai, Le</creator><creator>Huang, Cheng-Geng</creator><creator>Wan, Jia-Lun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid></search><sort><creationdate>20231001</creationdate><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><author>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Cheng-Geng</creatorcontrib><creatorcontrib>Wan, Jia-Lun</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiyuan</au><au>Guo, Junyu</au><au>Wang, Jiang</au><au>Yang, Yulai</au><au>Dai, Le</au><au>Huang, Cheng-Geng</au><au>Wan, Jia-Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</atitle><jtitle>Measurement science & technology</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>10</issue><spage>105105</spage><pages>105105-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3
σ
criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</abstract><doi>10.1088/1361-6501/ace072</doi><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2023-10, Vol.34 (10), p.105105 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_ace072 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20based%20health%20indicator%20construction%20and%20fault%20prognosis%20with%20uncertainty%20quantification%20for%20rolling%20bearings&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Wang,%20Zhiyuan&rft.date=2023-10-01&rft.volume=34&rft.issue=10&rft.spage=105105&rft.pages=105105-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ace072&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ace072%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |