A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings

In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2023-10, Vol.34 (10), p.105105
Hauptverfasser: Wang, Zhiyuan, Guo, Junyu, Wang, Jiang, Yang, Yulai, Dai, Le, Huang, Cheng-Geng, Wan, Jia-Lun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105105
container_title Measurement science & technology
container_volume 34
creator Wang, Zhiyuan
Guo, Junyu
Wang, Jiang
Yang, Yulai
Dai, Le
Huang, Cheng-Geng
Wan, Jia-Lun
description In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3 σ criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.
doi_str_mv 10.1088/1361-6501/ace072
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_ace072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_ace072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKf3XuYP1L1p2qa5HMMvGHij1yVN3myRmswkRQb-eFsnXh04nA94CLllcMegbVeMN6xoamArpRFEeUYW_9Y5WYCsRQEl55fkKqV3ABAg5YJ8r6lBPNABVfTO72ivEhq6RzXkPXXeOK1yiFQHn3IcdXbBU-UNtWocMj3EsPMhuUS_3JQfvcaYlfP5SD9H5bOzc3_u2GkkhmH4_ZjOJk3X5MKqIeHNny7J28P96-ap2L48Pm_W20KXFc8FmoY3EjjrGWCve1ZC1WrNhBXYC4VSWl5xrBAsb4w0XJW1YLVtJfTMyJYvCZx2dQwpRbTdIboPFY8dg26m182ouhlVd6LHfwDcfGay</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</creator><creatorcontrib>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</creatorcontrib><description>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3 σ criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/ace072</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2023-10, Vol.34 (10), p.105105</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</citedby><cites>FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</cites><orcidid>0000-0001-9462-9501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Cheng-Geng</creatorcontrib><creatorcontrib>Wan, Jia-Lun</creatorcontrib><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><title>Measurement science &amp; technology</title><description>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3 σ criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKf3XuYP1L1p2qa5HMMvGHij1yVN3myRmswkRQb-eFsnXh04nA94CLllcMegbVeMN6xoamArpRFEeUYW_9Y5WYCsRQEl55fkKqV3ABAg5YJ8r6lBPNABVfTO72ivEhq6RzXkPXXeOK1yiFQHn3IcdXbBU-UNtWocMj3EsPMhuUS_3JQfvcaYlfP5SD9H5bOzc3_u2GkkhmH4_ZjOJk3X5MKqIeHNny7J28P96-ap2L48Pm_W20KXFc8FmoY3EjjrGWCve1ZC1WrNhBXYC4VSWl5xrBAsb4w0XJW1YLVtJfTMyJYvCZx2dQwpRbTdIboPFY8dg26m182ouhlVd6LHfwDcfGay</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wang, Zhiyuan</creator><creator>Guo, Junyu</creator><creator>Wang, Jiang</creator><creator>Yang, Yulai</creator><creator>Dai, Le</creator><creator>Huang, Cheng-Geng</creator><creator>Wan, Jia-Lun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid></search><sort><creationdate>20231001</creationdate><title>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</title><author>Wang, Zhiyuan ; Guo, Junyu ; Wang, Jiang ; Yang, Yulai ; Dai, Le ; Huang, Cheng-Geng ; Wan, Jia-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-ed6369031b10ebcb12048cc17f7eb7ae99f343e4e0f36d9d3a25715f890b1d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Wang, Jiang</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Cheng-Geng</creatorcontrib><creatorcontrib>Wan, Jia-Lun</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiyuan</au><au>Guo, Junyu</au><au>Wang, Jiang</au><au>Yang, Yulai</au><au>Dai, Le</au><au>Huang, Cheng-Geng</au><au>Wan, Jia-Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>10</issue><spage>105105</spage><pages>105105-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>In this paper, a hybrid convolutional neural network (CNN)-bidirectional gated recurrent unit (BiGRU) model is integrated with the bootstrap method to endow the deep learning (DL) based prognostic method with the quantification capability of the prognostic intervals. The proposed hybrid method contains three parts: (I) The complete ensemble empirical mode decomposition with adaptive noise and principal component analysis and the CNN-BiGRU are utilized to automatically construct the health indicator (HI). (II) 3 σ criterion is employed to detect the first predicting time based on the HIs of rolling bearings. (III) The bootstrap method is imposed to endow the proposed DL method with the quantification capability of the prognostic intervals. The experimental validation is carried out on the XJTU-SY bearing dataset and the proposed method outperforms the other four methods in the majority of cases. In addition, the proposed method not only comprehensively considers the fault prognosis error caused by model parameters and noise, but also considers the prediction error caused by different combinations of features on the model.</abstract><doi>10.1088/1361-6501/ace072</doi><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2023-10, Vol.34 (10), p.105105
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_ace072
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title A deep learning based health indicator construction and fault prognosis with uncertainty quantification for rolling bearings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20based%20health%20indicator%20construction%20and%20fault%20prognosis%20with%20uncertainty%20quantification%20for%20rolling%20bearings&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Wang,%20Zhiyuan&rft.date=2023-10-01&rft.volume=34&rft.issue=10&rft.spage=105105&rft.pages=105105-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/ace072&rft_dat=%3Ccrossref%3E10_1088_1361_6501_ace072%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true