FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization

Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly autonomous robots and robustness. Many studies have been conducted, such as visual–inertial odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO, gratifying results have been ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2023-04, Vol.34 (4), p.45108
Hauptverfasser: Liu, Yunfei, Li, Zhitian, Xiao, Linhui, Zheng, Shuaikang, Cai, Pengcheng, Zhang, Haifeng, Zheng, Pengcheng, Zou, Xudong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45108
container_title Measurement science & technology
container_volume 34
creator Liu, Yunfei
Li, Zhitian
Xiao, Linhui
Zheng, Shuaikang
Cai, Pengcheng
Zhang, Haifeng
Zheng, Pengcheng
Zou, Xudong
description Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly autonomous robots and robustness. Many studies have been conducted, such as visual–inertial odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO, gratifying results have been achieved, ascribing to the complementary sensing capabilities of inertial measurement units (IMUs) and cameras. However, this work mainly focuses on the fusion of visual and inertial data, while the IMU error is less considered, especially for low-cost or poorly calibrated microelectromechanical system (MEMS) IMU. Such errors may have a significant effect on the VIO performance. In this study, we compensated for the IMU using camera assistance. The key characteristic of the method is that we optimize the compensation parameters (scale factor) from coarse to fine by combining the time domain with the frequency domain. The proposed method is to use the time-domain and frequency-domain optimization to suppress large noise in the dynamic calibration process of the extremely low-cost sensor platform. The effectiveness of this method is validated through experiments and simulations. The minimal calibration error (0.46%) is commensurate with the advanced work. By feeding the compensated IMU into the VIO algorithm, the localization accuracy is improved by 9% to 15%. This method improves the performance in the VIO algorithm, which is equipped with the low-cost or poorly calibrated MEMS IMU and reduces the hardware and deployment costs of the system.
doi_str_mv 10.1088/1361-6501/acadfb
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_acadfb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_acadfb</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-1ee55e7300bc30fea8c2d13b2f92dc75269bdae3e3d8e2405270098114c98e43</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKLgWr173D8Q-yXZR-JNVquFyl7qecnjC0T2UTdbof56u614mmFmGJgh5J7BAwMpl0wUjBY5sKW22nlzQZJ_6ZIkoPKSAhfimtzE-AkAJSiVkHr1XNNKt8GMj-l3iHvdUh0cunT9_pHak6GnMPSp0fGoHokf8WuPvT1QN3Q69Omwm0IXfk6xW3LldRvx7g8XZLt62VZvdFO_rqunDbU8ExNliHmOpQAwVoBHLS13TBjuFXe2zHmhjNMoUDiJPIOclwBKMpZZJTETCwLnWjsOMY7om90YOj0eGgbN_Eczj2_m8c35D_ELnSNUyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Liu, Yunfei ; Li, Zhitian ; Xiao, Linhui ; Zheng, Shuaikang ; Cai, Pengcheng ; Zhang, Haifeng ; Zheng, Pengcheng ; Zou, Xudong</creator><creatorcontrib>Liu, Yunfei ; Li, Zhitian ; Xiao, Linhui ; Zheng, Shuaikang ; Cai, Pengcheng ; Zhang, Haifeng ; Zheng, Pengcheng ; Zou, Xudong</creatorcontrib><description>Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly autonomous robots and robustness. Many studies have been conducted, such as visual–inertial odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO, gratifying results have been achieved, ascribing to the complementary sensing capabilities of inertial measurement units (IMUs) and cameras. However, this work mainly focuses on the fusion of visual and inertial data, while the IMU error is less considered, especially for low-cost or poorly calibrated microelectromechanical system (MEMS) IMU. Such errors may have a significant effect on the VIO performance. In this study, we compensated for the IMU using camera assistance. The key characteristic of the method is that we optimize the compensation parameters (scale factor) from coarse to fine by combining the time domain with the frequency domain. The proposed method is to use the time-domain and frequency-domain optimization to suppress large noise in the dynamic calibration process of the extremely low-cost sensor platform. The effectiveness of this method is validated through experiments and simulations. The minimal calibration error (0.46%) is commensurate with the advanced work. By feeding the compensated IMU into the VIO algorithm, the localization accuracy is improved by 9% to 15%. This method improves the performance in the VIO algorithm, which is equipped with the low-cost or poorly calibrated MEMS IMU and reduces the hardware and deployment costs of the system.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/acadfb</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2023-04, Vol.34 (4), p.45108</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-1ee55e7300bc30fea8c2d13b2f92dc75269bdae3e3d8e2405270098114c98e43</citedby><cites>FETCH-LOGICAL-c243t-1ee55e7300bc30fea8c2d13b2f92dc75269bdae3e3d8e2405270098114c98e43</cites><orcidid>0000-0003-2077-9253 ; 0000-0001-6170-7067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Li, Zhitian</creatorcontrib><creatorcontrib>Xiao, Linhui</creatorcontrib><creatorcontrib>Zheng, Shuaikang</creatorcontrib><creatorcontrib>Cai, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Zheng, Pengcheng</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><title>FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization</title><title>Measurement science &amp; technology</title><description>Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly autonomous robots and robustness. Many studies have been conducted, such as visual–inertial odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO, gratifying results have been achieved, ascribing to the complementary sensing capabilities of inertial measurement units (IMUs) and cameras. However, this work mainly focuses on the fusion of visual and inertial data, while the IMU error is less considered, especially for low-cost or poorly calibrated microelectromechanical system (MEMS) IMU. Such errors may have a significant effect on the VIO performance. In this study, we compensated for the IMU using camera assistance. The key characteristic of the method is that we optimize the compensation parameters (scale factor) from coarse to fine by combining the time domain with the frequency domain. The proposed method is to use the time-domain and frequency-domain optimization to suppress large noise in the dynamic calibration process of the extremely low-cost sensor platform. The effectiveness of this method is validated through experiments and simulations. The minimal calibration error (0.46%) is commensurate with the advanced work. By feeding the compensated IMU into the VIO algorithm, the localization accuracy is improved by 9% to 15%. This method improves the performance in the VIO algorithm, which is equipped with the low-cost or poorly calibrated MEMS IMU and reduces the hardware and deployment costs of the system.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLAzEYDKLgWr173D8Q-yXZR-JNVquFyl7qecnjC0T2UTdbof56u614mmFmGJgh5J7BAwMpl0wUjBY5sKW22nlzQZJ_6ZIkoPKSAhfimtzE-AkAJSiVkHr1XNNKt8GMj-l3iHvdUh0cunT9_pHak6GnMPSp0fGoHokf8WuPvT1QN3Q69Omwm0IXfk6xW3LldRvx7g8XZLt62VZvdFO_rqunDbU8ExNliHmOpQAwVoBHLS13TBjuFXe2zHmhjNMoUDiJPIOclwBKMpZZJTETCwLnWjsOMY7om90YOj0eGgbN_Eczj2_m8c35D_ELnSNUyA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, Yunfei</creator><creator>Li, Zhitian</creator><creator>Xiao, Linhui</creator><creator>Zheng, Shuaikang</creator><creator>Cai, Pengcheng</creator><creator>Zhang, Haifeng</creator><creator>Zheng, Pengcheng</creator><creator>Zou, Xudong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2077-9253</orcidid><orcidid>https://orcid.org/0000-0001-6170-7067</orcidid></search><sort><creationdate>20230401</creationdate><title>FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization</title><author>Liu, Yunfei ; Li, Zhitian ; Xiao, Linhui ; Zheng, Shuaikang ; Cai, Pengcheng ; Zhang, Haifeng ; Zheng, Pengcheng ; Zou, Xudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-1ee55e7300bc30fea8c2d13b2f92dc75269bdae3e3d8e2405270098114c98e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yunfei</creatorcontrib><creatorcontrib>Li, Zhitian</creatorcontrib><creatorcontrib>Xiao, Linhui</creatorcontrib><creatorcontrib>Zheng, Shuaikang</creatorcontrib><creatorcontrib>Cai, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Haifeng</creatorcontrib><creatorcontrib>Zheng, Pengcheng</creatorcontrib><creatorcontrib>Zou, Xudong</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yunfei</au><au>Li, Zhitian</au><au>Xiao, Linhui</au><au>Zheng, Shuaikang</au><au>Cai, Pengcheng</au><au>Zhang, Haifeng</au><au>Zheng, Pengcheng</au><au>Zou, Xudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>34</volume><issue>4</issue><spage>45108</spage><pages>45108-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Nowadays, multi-sensor fusion technology is a fundamental prerequisite to achieve highly autonomous robots and robustness. Many studies have been conducted, such as visual–inertial odometry (VIO), integrated navigation, and LiDAR–inertial odometry. Typically, for VIO, gratifying results have been achieved, ascribing to the complementary sensing capabilities of inertial measurement units (IMUs) and cameras. However, this work mainly focuses on the fusion of visual and inertial data, while the IMU error is less considered, especially for low-cost or poorly calibrated microelectromechanical system (MEMS) IMU. Such errors may have a significant effect on the VIO performance. In this study, we compensated for the IMU using camera assistance. The key characteristic of the method is that we optimize the compensation parameters (scale factor) from coarse to fine by combining the time domain with the frequency domain. The proposed method is to use the time-domain and frequency-domain optimization to suppress large noise in the dynamic calibration process of the extremely low-cost sensor platform. The effectiveness of this method is validated through experiments and simulations. The minimal calibration error (0.46%) is commensurate with the advanced work. By feeding the compensated IMU into the VIO algorithm, the localization accuracy is improved by 9% to 15%. This method improves the performance in the VIO algorithm, which is equipped with the low-cost or poorly calibrated MEMS IMU and reduces the hardware and deployment costs of the system.</abstract><doi>10.1088/1361-6501/acadfb</doi><orcidid>https://orcid.org/0000-0003-2077-9253</orcidid><orcidid>https://orcid.org/0000-0001-6170-7067</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2023-04, Vol.34 (4), p.45108
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_acadfb
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title FDO-Calibr: visual-aided IMU calibration based on frequency-domain optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FDO-Calibr:%20visual-aided%20IMU%20calibration%20based%20on%20frequency-domain%20optimization&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Liu,%20Yunfei&rft.date=2023-04-01&rft.volume=34&rft.issue=4&rft.spage=45108&rft.pages=45108-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/acadfb&rft_dat=%3Ccrossref%3E10_1088_1361_6501_acadfb%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true