Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph

Multiple faults often occur in the operation of rotating machinery transmission systems. The fault signals of multiple bearings interfere with each other, which makes feature extraction and diagnosis of complex compound fault signals difficult. Because the graph convolution networks (GCN) can effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2023-03, Vol.34 (3), p.35022
Hauptverfasser: Xiaoyun, Gong, Kunpeng, Feng, Zeheng, Zhi, Yiyuan, Gao, Wenliao, Du
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35022
container_title Measurement science & technology
container_volume 34
creator Xiaoyun, Gong
Kunpeng, Feng
Zeheng, Zhi
Yiyuan, Gao
Wenliao, Du
description Multiple faults often occur in the operation of rotating machinery transmission systems. The fault signals of multiple bearings interfere with each other, which makes feature extraction and diagnosis of complex compound fault signals difficult. Because the graph convolution networks (GCN) can effectively map the structural information from complex data and its model has a certain generalization ability, this paper proposes a multiple fault diagnosis method for rolling bearings employing complete ensemble empirical mode decomposition (CEEMD) and a GCN (CEEMD-GCN) based on a horizontal visibility graph (HVG). Firstly, in order to highlight the effective feature information in the multiple fault signal and reduce noise interference, multiple indicators of correlation and kurtosis are used to reconstruct the decomposed signals through CEEMD; secondly, the reconstructed signals are constructed as an HVG, and the HVG maps the time series signal to the graphic structure data, reflecting the local geometric characteristics of the vibration signal through the horizontal visibility relationship; finally, taking the signal samples obtained by the HVG algorithm as the input data of the model, the GCN model is trained to realize the diagnosis of multiple faults. The experimental results show that the presented methodology is superior to other methods and exhibits generalization ability for multiple fault diagnosis.
doi_str_mv 10.1088/1361-6501/aca706
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_aca706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_aca706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-a0f350731fb39e6361979ee367ef7813ebcbca49c2f6c93ee5b54f6386984e993</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKt3j_kDa1-abrI5ylpbodWLnpckfWkj2c2SrEL99XapeJphBgbmI-SewQODqpoxLlghSmAzbbUEcUEm_9ElmYAqZQFzzq_JTc6fACBBqQlpt19h8H1A6vTJ0Z3X-y5mn6mLiaYYgu_21KBOJ820xeEQdxTbPsTj2NTL5fapWNWv1OiMOxo7eojJ_8Ru0IF---yND3440n3S_eGWXDkdMt796ZR8PC_f63WxeVu91I-bwjLJh0KD4yVIzpzhCsXphpIKkQuJTlaMo7HG6oWycyes4oilKRdO8EqoaoFK8SmB865NMeeErumTb3U6NgyaEVczsmlGNs0ZF_8FMPFfsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xiaoyun, Gong ; Kunpeng, Feng ; Zeheng, Zhi ; Yiyuan, Gao ; Wenliao, Du</creator><creatorcontrib>Xiaoyun, Gong ; Kunpeng, Feng ; Zeheng, Zhi ; Yiyuan, Gao ; Wenliao, Du</creatorcontrib><description>Multiple faults often occur in the operation of rotating machinery transmission systems. The fault signals of multiple bearings interfere with each other, which makes feature extraction and diagnosis of complex compound fault signals difficult. Because the graph convolution networks (GCN) can effectively map the structural information from complex data and its model has a certain generalization ability, this paper proposes a multiple fault diagnosis method for rolling bearings employing complete ensemble empirical mode decomposition (CEEMD) and a GCN (CEEMD-GCN) based on a horizontal visibility graph (HVG). Firstly, in order to highlight the effective feature information in the multiple fault signal and reduce noise interference, multiple indicators of correlation and kurtosis are used to reconstruct the decomposed signals through CEEMD; secondly, the reconstructed signals are constructed as an HVG, and the HVG maps the time series signal to the graphic structure data, reflecting the local geometric characteristics of the vibration signal through the horizontal visibility relationship; finally, taking the signal samples obtained by the HVG algorithm as the input data of the model, the GCN model is trained to realize the diagnosis of multiple faults. The experimental results show that the presented methodology is superior to other methods and exhibits generalization ability for multiple fault diagnosis.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/aca706</identifier><language>eng</language><ispartof>Measurement science &amp; technology, 2023-03, Vol.34 (3), p.35022</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c173t-a0f350731fb39e6361979ee367ef7813ebcbca49c2f6c93ee5b54f6386984e993</citedby><cites>FETCH-LOGICAL-c173t-a0f350731fb39e6361979ee367ef7813ebcbca49c2f6c93ee5b54f6386984e993</cites><orcidid>0000-0002-1583-381X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiaoyun, Gong</creatorcontrib><creatorcontrib>Kunpeng, Feng</creatorcontrib><creatorcontrib>Zeheng, Zhi</creatorcontrib><creatorcontrib>Yiyuan, Gao</creatorcontrib><creatorcontrib>Wenliao, Du</creatorcontrib><title>Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph</title><title>Measurement science &amp; technology</title><description>Multiple faults often occur in the operation of rotating machinery transmission systems. The fault signals of multiple bearings interfere with each other, which makes feature extraction and diagnosis of complex compound fault signals difficult. Because the graph convolution networks (GCN) can effectively map the structural information from complex data and its model has a certain generalization ability, this paper proposes a multiple fault diagnosis method for rolling bearings employing complete ensemble empirical mode decomposition (CEEMD) and a GCN (CEEMD-GCN) based on a horizontal visibility graph (HVG). Firstly, in order to highlight the effective feature information in the multiple fault signal and reduce noise interference, multiple indicators of correlation and kurtosis are used to reconstruct the decomposed signals through CEEMD; secondly, the reconstructed signals are constructed as an HVG, and the HVG maps the time series signal to the graphic structure data, reflecting the local geometric characteristics of the vibration signal through the horizontal visibility relationship; finally, taking the signal samples obtained by the HVG algorithm as the input data of the model, the GCN model is trained to realize the diagnosis of multiple faults. The experimental results show that the presented methodology is superior to other methods and exhibits generalization ability for multiple fault diagnosis.</description><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKt3j_kDa1-abrI5ylpbodWLnpckfWkj2c2SrEL99XapeJphBgbmI-SewQODqpoxLlghSmAzbbUEcUEm_9ElmYAqZQFzzq_JTc6fACBBqQlpt19h8H1A6vTJ0Z3X-y5mn6mLiaYYgu_21KBOJ820xeEQdxTbPsTj2NTL5fapWNWv1OiMOxo7eojJ_8Ru0IF---yND3440n3S_eGWXDkdMt796ZR8PC_f63WxeVu91I-bwjLJh0KD4yVIzpzhCsXphpIKkQuJTlaMo7HG6oWycyes4oilKRdO8EqoaoFK8SmB865NMeeErumTb3U6NgyaEVczsmlGNs0ZF_8FMPFfsQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Xiaoyun, Gong</creator><creator>Kunpeng, Feng</creator><creator>Zeheng, Zhi</creator><creator>Yiyuan, Gao</creator><creator>Wenliao, Du</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1583-381X</orcidid></search><sort><creationdate>20230301</creationdate><title>Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph</title><author>Xiaoyun, Gong ; Kunpeng, Feng ; Zeheng, Zhi ; Yiyuan, Gao ; Wenliao, Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-a0f350731fb39e6361979ee367ef7813ebcbca49c2f6c93ee5b54f6386984e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyun, Gong</creatorcontrib><creatorcontrib>Kunpeng, Feng</creatorcontrib><creatorcontrib>Zeheng, Zhi</creatorcontrib><creatorcontrib>Yiyuan, Gao</creatorcontrib><creatorcontrib>Wenliao, Du</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoyun, Gong</au><au>Kunpeng, Feng</au><au>Zeheng, Zhi</au><au>Yiyuan, Gao</au><au>Wenliao, Du</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph</atitle><jtitle>Measurement science &amp; technology</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>35022</spage><pages>35022-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><abstract>Multiple faults often occur in the operation of rotating machinery transmission systems. The fault signals of multiple bearings interfere with each other, which makes feature extraction and diagnosis of complex compound fault signals difficult. Because the graph convolution networks (GCN) can effectively map the structural information from complex data and its model has a certain generalization ability, this paper proposes a multiple fault diagnosis method for rolling bearings employing complete ensemble empirical mode decomposition (CEEMD) and a GCN (CEEMD-GCN) based on a horizontal visibility graph (HVG). Firstly, in order to highlight the effective feature information in the multiple fault signal and reduce noise interference, multiple indicators of correlation and kurtosis are used to reconstruct the decomposed signals through CEEMD; secondly, the reconstructed signals are constructed as an HVG, and the HVG maps the time series signal to the graphic structure data, reflecting the local geometric characteristics of the vibration signal through the horizontal visibility relationship; finally, taking the signal samples obtained by the HVG algorithm as the input data of the model, the GCN model is trained to realize the diagnosis of multiple faults. The experimental results show that the presented methodology is superior to other methods and exhibits generalization ability for multiple fault diagnosis.</abstract><doi>10.1088/1361-6501/aca706</doi><orcidid>https://orcid.org/0000-0002-1583-381X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2023-03, Vol.34 (3), p.35022
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_aca706
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Multiple fault diagnosis for rolling bearings method employing CEEMD-GCN based on horizontal visibility graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20fault%20diagnosis%20for%20rolling%20bearings%20method%20employing%20CEEMD-GCN%20based%20on%20horizontal%20visibility%20graph&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Xiaoyun,%20Gong&rft.date=2023-03-01&rft.volume=34&rft.issue=3&rft.spage=35022&rft.pages=35022-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/aca706&rft_dat=%3Ccrossref%3E10_1088_1361_6501_aca706%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true