Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2021-09, Vol.32 (9), p.95110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 95110 |
container_title | Measurement science & technology |
container_volume | 32 |
creator | Wang, Gang Huang, Jingli Zhang, Feng |
description | |
doi_str_mv | 10.1088/1361-6501/abfb1f |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_abfb1f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6501_abfb1f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-79d5e4d79a564ebeab4e00a15a683143538511a850138f68edac38716c0080a53</originalsourceid><addsrcrecordid>eNo9kE9LxDAUxIMoWFfvHvMF6r5smjY9yrL-gQUvei6vzcsabdOSpAe_vS0rngZmhoH5MXYv4EGA1lshS5GXCsQWW9sKe8Gyf-uSZVCrKoedlNfsJsYvAKigrjP2ffCRhrYn3vVzTBScP-UtRjLc4twnbhye_Bhd5AOlz9Fw57sxTGPAtFR5CmhccqPHnqM33BBNPNAUKJJPuCbcEqZ5MW7ZlcU-0t2fbtjH0-F9_5If355f94_HvNsVMuVVbRQVpqpRlQW1hG1BACgUllqKQiqplRCol2NS21KTwU7qSpQdgAZUcsPgvNuFMcZAtpmCGzD8NAKaFVazkmlWMs0ZlvwF1ZlgjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Gang ; Huang, Jingli ; Zhang, Feng</creator><creatorcontrib>Wang, Gang ; Huang, Jingli ; Zhang, Feng</creatorcontrib><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/abfb1f</identifier><language>eng</language><ispartof>Measurement science & technology, 2021-09, Vol.32 (9), p.95110</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-79d5e4d79a564ebeab4e00a15a683143538511a850138f68edac38716c0080a53</citedby><cites>FETCH-LOGICAL-c243t-79d5e4d79a564ebeab4e00a15a683143538511a850138f68edac38716c0080a53</cites><orcidid>0000-0002-6395-9409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Huang, Jingli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><title>Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features</title><title>Measurement science & technology</title><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LxDAUxIMoWFfvHvMF6r5smjY9yrL-gQUvei6vzcsabdOSpAe_vS0rngZmhoH5MXYv4EGA1lshS5GXCsQWW9sKe8Gyf-uSZVCrKoedlNfsJsYvAKigrjP2ffCRhrYn3vVzTBScP-UtRjLc4twnbhye_Bhd5AOlz9Fw57sxTGPAtFR5CmhccqPHnqM33BBNPNAUKJJPuCbcEqZ5MW7ZlcU-0t2fbtjH0-F9_5If355f94_HvNsVMuVVbRQVpqpRlQW1hG1BACgUllqKQiqplRCol2NS21KTwU7qSpQdgAZUcsPgvNuFMcZAtpmCGzD8NAKaFVazkmlWMs0ZlvwF1ZlgjA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wang, Gang</creator><creator>Huang, Jingli</creator><creator>Zhang, Feng</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6395-9409</orcidid></search><sort><creationdate>20210901</creationdate><title>Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features</title><author>Wang, Gang ; Huang, Jingli ; Zhang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-79d5e4d79a564ebeab4e00a15a683143538511a850138f68edac38716c0080a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Huang, Jingli</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang</au><au>Huang, Jingli</au><au>Zhang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features</atitle><jtitle>Measurement science & technology</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>95110</spage><pages>95110-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><doi>10.1088/1361-6501/abfb1f</doi><orcidid>https://orcid.org/0000-0002-6395-9409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2021-09, Vol.32 (9), p.95110 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_abfb1f |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20clustering-based%20fault%20diagnosis%20method%20incorporating%20traditional%20and%20deep%20representation%20features&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Wang,%20Gang&rft.date=2021-09-01&rft.volume=32&rft.issue=9&rft.spage=95110&rft.pages=95110-&rft.issn=0957-0233&rft.eissn=1361-6501&rft_id=info:doi/10.1088/1361-6501/abfb1f&rft_dat=%3Ccrossref%3E10_1088_1361_6501_abfb1f%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |