Development of instrumentation for measurements of two components of velocity with a single sensing element
A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elasti...
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2018-02, Vol.29 (2), p.25304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25304 |
container_title | Measurement science & technology |
container_volume | 29 |
creator | Byers, C P Fu, M K Fan, Y Hultmark, M |
description | A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution. |
doi_str_mv | 10.1088/1361-6501/aa99c1 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_aa99c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mstaa99c1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHQU7qj4ciufS-XKDylSDRQWz6fDRdy55PtEOXfExOgQlS7O5oZrT5CzhGuEOp6hrzErCwAZ0oJofGATH6lQzIBUVQZMM6PyUkISwCoQIgJeb8xH2blxt4MkTpLuyFEv06Xip0bqHWe9kaFtTdJDMkTN45q149u-FFShe7ilm66-EYVDd3wujI0mCFt1Ky-wqfkyKpVMGffc0pe7m6f5w_Z4un-cX69yDRHFrOaFYyLBlvUCJaBtchty5qqbfIGa1tXja0KVmAJlShzkUOrTcE1qpYLqFs-JbDv1d6F4I2Vo-965bcSQSZYMpGRiYzcw9pFLveRzo1y6dZ-2D34n_3iD3sfomRCMgms4JDLsbX8E0q8erI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</creator><creatorcontrib>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</creatorcontrib><description>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/aa99c1</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>flow measurements ; fluids ; sensors ; turbulence</subject><ispartof>Measurement science & technology, 2018-02, Vol.29 (2), p.25304</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</citedby><cites>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</cites><orcidid>0000-0003-3949-7838 ; 0000-0002-5271-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6501/aa99c1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Byers, C P</creatorcontrib><creatorcontrib>Fu, M K</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Hultmark, M</creatorcontrib><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><title>Measurement science & technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</description><subject>flow measurements</subject><subject>fluids</subject><subject>sensors</subject><subject>turbulence</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHQU7qj4ciufS-XKDylSDRQWz6fDRdy55PtEOXfExOgQlS7O5oZrT5CzhGuEOp6hrzErCwAZ0oJofGATH6lQzIBUVQZMM6PyUkISwCoQIgJeb8xH2blxt4MkTpLuyFEv06Xip0bqHWe9kaFtTdJDMkTN45q149u-FFShe7ilm66-EYVDd3wujI0mCFt1Ky-wqfkyKpVMGffc0pe7m6f5w_Z4un-cX69yDRHFrOaFYyLBlvUCJaBtchty5qqbfIGa1tXja0KVmAJlShzkUOrTcE1qpYLqFs-JbDv1d6F4I2Vo-965bcSQSZYMpGRiYzcw9pFLveRzo1y6dZ-2D34n_3iD3sfomRCMgms4JDLsbX8E0q8erI</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Byers, C P</creator><creator>Fu, M K</creator><creator>Fan, Y</creator><creator>Hultmark, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid><orcidid>https://orcid.org/0000-0002-5271-7076</orcidid></search><sort><creationdate>20180201</creationdate><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><author>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>flow measurements</topic><topic>fluids</topic><topic>sensors</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byers, C P</creatorcontrib><creatorcontrib>Fu, M K</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Hultmark, M</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byers, C P</au><au>Fu, M K</au><au>Fan, Y</au><au>Hultmark, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of instrumentation for measurements of two components of velocity with a single sensing element</atitle><jtitle>Measurement science & technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>25304</spage><pages>25304-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6501/aa99c1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid><orcidid>https://orcid.org/0000-0002-5271-7076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2018-02, Vol.29 (2), p.25304 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_aa99c1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | flow measurements fluids sensors turbulence |
title | Development of instrumentation for measurements of two components of velocity with a single sensing element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20instrumentation%20for%20measurements%20of%20two%20components%20of%20velocity%20with%20a%20single%20sensing%20element&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Byers,%20C%20P&rft.date=2018-02-01&rft.volume=29&rft.issue=2&rft.spage=25304&rft.pages=25304-&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/1361-6501/aa99c1&rft_dat=%3Ciop_cross%3Emstaa99c1%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |