Development of instrumentation for measurements of two components of velocity with a single sensing element

A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2018-02, Vol.29 (2), p.25304
Hauptverfasser: Byers, C P, Fu, M K, Fan, Y, Hultmark, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25304
container_title Measurement science & technology
container_volume 29
creator Byers, C P
Fu, M K
Fan, Y
Hultmark, M
description A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.
doi_str_mv 10.1088/1361-6501/aa99c1
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_aa99c1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mstaa99c1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHQU7qj4ciufS-XKDylSDRQWz6fDRdy55PtEOXfExOgQlS7O5oZrT5CzhGuEOp6hrzErCwAZ0oJofGATH6lQzIBUVQZMM6PyUkISwCoQIgJeb8xH2blxt4MkTpLuyFEv06Xip0bqHWe9kaFtTdJDMkTN45q149u-FFShe7ilm66-EYVDd3wujI0mCFt1Ky-wqfkyKpVMGffc0pe7m6f5w_Z4un-cX69yDRHFrOaFYyLBlvUCJaBtchty5qqbfIGa1tXja0KVmAJlShzkUOrTcE1qpYLqFs-JbDv1d6F4I2Vo-965bcSQSZYMpGRiYzcw9pFLveRzo1y6dZ-2D34n_3iD3sfomRCMgms4JDLsbX8E0q8erI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</creator><creatorcontrib>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</creatorcontrib><description>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/aa99c1</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>flow measurements ; fluids ; sensors ; turbulence</subject><ispartof>Measurement science &amp; technology, 2018-02, Vol.29 (2), p.25304</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</citedby><cites>FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</cites><orcidid>0000-0003-3949-7838 ; 0000-0002-5271-7076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6501/aa99c1/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Byers, C P</creatorcontrib><creatorcontrib>Fu, M K</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Hultmark, M</creatorcontrib><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><title>Measurement science &amp; technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</description><subject>flow measurements</subject><subject>fluids</subject><subject>sensors</subject><subject>turbulence</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHQU7qj4ciufS-XKDylSDRQWz6fDRdy55PtEOXfExOgQlS7O5oZrT5CzhGuEOp6hrzErCwAZ0oJofGATH6lQzIBUVQZMM6PyUkISwCoQIgJeb8xH2blxt4MkTpLuyFEv06Xip0bqHWe9kaFtTdJDMkTN45q149u-FFShe7ilm66-EYVDd3wujI0mCFt1Ky-wqfkyKpVMGffc0pe7m6f5w_Z4un-cX69yDRHFrOaFYyLBlvUCJaBtchty5qqbfIGa1tXja0KVmAJlShzkUOrTcE1qpYLqFs-JbDv1d6F4I2Vo-965bcSQSZYMpGRiYzcw9pFLveRzo1y6dZ-2D34n_3iD3sfomRCMgms4JDLsbX8E0q8erI</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Byers, C P</creator><creator>Fu, M K</creator><creator>Fan, Y</creator><creator>Hultmark, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid><orcidid>https://orcid.org/0000-0002-5271-7076</orcidid></search><sort><creationdate>20180201</creationdate><title>Development of instrumentation for measurements of two components of velocity with a single sensing element</title><author>Byers, C P ; Fu, M K ; Fan, Y ; Hultmark, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-825239b1d1c10f20ff13fd2b7db4b18f87bf75251607964940dce53c1ad3908d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>flow measurements</topic><topic>fluids</topic><topic>sensors</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byers, C P</creatorcontrib><creatorcontrib>Fu, M K</creatorcontrib><creatorcontrib>Fan, Y</creatorcontrib><creatorcontrib>Hultmark, M</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byers, C P</au><au>Fu, M K</au><au>Fan, Y</au><au>Hultmark, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of instrumentation for measurements of two components of velocity with a single sensing element</atitle><jtitle>Measurement science &amp; technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>29</volume><issue>2</issue><spage>25304</spage><pages>25304-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6501/aa99c1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3949-7838</orcidid><orcidid>https://orcid.org/0000-0002-5271-7076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-0233
ispartof Measurement science & technology, 2018-02, Vol.29 (2), p.25304
issn 0957-0233
1361-6501
language eng
recordid cdi_crossref_primary_10_1088_1361_6501_aa99c1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects flow measurements
fluids
sensors
turbulence
title Development of instrumentation for measurements of two components of velocity with a single sensing element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20instrumentation%20for%20measurements%20of%20two%20components%20of%20velocity%20with%20a%20single%20sensing%20element&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Byers,%20C%20P&rft.date=2018-02-01&rft.volume=29&rft.issue=2&rft.spage=25304&rft.pages=25304-&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/1361-6501/aa99c1&rft_dat=%3Ciop_cross%3Emstaa99c1%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true