Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations
The conventional approach to estimating measurement uncertainty employs the t-interval when the population standard deviation is unknown and the sample size is small (
Gespeichert in:
Veröffentlicht in: | Measurement science & technology 2018-01, Vol.29 (1), p.15004 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15004 |
container_title | Measurement science & technology |
container_volume | 29 |
creator | Huang, Hening |
description | The conventional approach to estimating measurement uncertainty employs the t-interval when the population standard deviation is unknown and the sample size is small ( |
doi_str_mv | 10.1088/1361-6501/aa96c7 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6501_aa96c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>mstaa96c7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-825a3c32e595e95cfe9ae4afe921822ce00e1fd8c96e5d0c6cac18ee5c478d413</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHaOg6qVObG6r4qVSJCz1Hi7MhrhKnsl2qHnh3XIq4cRppNd_s7jB2K-BOgFJTUZQiKyWIKaIuzfyMjf5G52wEWs4zyIvikl2FsAGAOWg9Yl9rZ8hHtC4eOIVoe4x2cHxvY8uRhx67jrtd_06eDw3vCcPOU08uhgnfoo98ec8d7bl1wX60MfAEx5Z4zFIk-U_sEhTboeboam6TobO9jT9bwjW7aLALdPOrY7Z-enxbvGSr1-fl4mGVmVxBzFQusTBFTlJL0tI0pJFmmCQXKs8NAZBoamV0SbIGUxo0QhFJM5ureiaKMYNTrvFDCJ6aauvTp_5QCaiO9VXHrqpjV9WpvoRMTogdttVm2HmXDvzf_g39GnRJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Huang, Hening</creator><creatorcontrib>Huang, Hening</creatorcontrib><description>The conventional approach to estimating measurement uncertainty employs the t-interval when the population standard deviation is unknown and the sample size is small (<30). This is because the t-interval, or t-based uncertainty, is considered to be the 'exact' solution to estimating measurement uncertainty for small samples. However, three paradoxes have been found to be attributable to the t-interval. This paper is the first one (Part I) in a series of two papers (Part I and Part II). It presents some new insights on the t-interval and explores its true underlying meaning. This paper reveals that the t-interval is a result from a distorted statistical inference in the transformed sample space. The transformation distortion is the root cause of extremely high t-scores when the sample size is very small (<5), resulting in unrealistic estimates of uncertainty. This is the fundamental limitation of the t-interval method for uncertainty estimation. Part II will propose a redefinition of uncertainty and a modification of the conventional approach to estimating measurement uncertainty.</description><identifier>ISSN: 0957-0233</identifier><identifier>EISSN: 1361-6501</identifier><identifier>DOI: 10.1088/1361-6501/aa96c7</identifier><identifier>CODEN: MSTCEP</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>interval ; small samples ; transformation distortion ; uncertainty estimation</subject><ispartof>Measurement science & technology, 2018-01, Vol.29 (1), p.15004</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-825a3c32e595e95cfe9ae4afe921822ce00e1fd8c96e5d0c6cac18ee5c478d413</citedby><cites>FETCH-LOGICAL-c280t-825a3c32e595e95cfe9ae4afe921822ce00e1fd8c96e5d0c6cac18ee5c478d413</cites><orcidid>0000-0003-1882-0042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6501/aa96c7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,53824,53871</link.rule.ids></links><search><creatorcontrib>Huang, Hening</creatorcontrib><title>Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations</title><title>Measurement science & technology</title><addtitle>MST</addtitle><addtitle>Meas. Sci. Technol</addtitle><description>The conventional approach to estimating measurement uncertainty employs the t-interval when the population standard deviation is unknown and the sample size is small (<30). This is because the t-interval, or t-based uncertainty, is considered to be the 'exact' solution to estimating measurement uncertainty for small samples. However, three paradoxes have been found to be attributable to the t-interval. This paper is the first one (Part I) in a series of two papers (Part I and Part II). It presents some new insights on the t-interval and explores its true underlying meaning. This paper reveals that the t-interval is a result from a distorted statistical inference in the transformed sample space. The transformation distortion is the root cause of extremely high t-scores when the sample size is very small (<5), resulting in unrealistic estimates of uncertainty. This is the fundamental limitation of the t-interval method for uncertainty estimation. Part II will propose a redefinition of uncertainty and a modification of the conventional approach to estimating measurement uncertainty.</description><subject>interval</subject><subject>small samples</subject><subject>transformation distortion</subject><subject>uncertainty estimation</subject><issn>0957-0233</issn><issn>1361-6501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHaOg6qVObG6r4qVSJCz1Hi7MhrhKnsl2qHnh3XIq4cRppNd_s7jB2K-BOgFJTUZQiKyWIKaIuzfyMjf5G52wEWs4zyIvikl2FsAGAOWg9Yl9rZ8hHtC4eOIVoe4x2cHxvY8uRhx67jrtd_06eDw3vCcPOU08uhgnfoo98ec8d7bl1wX60MfAEx5Z4zFIk-U_sEhTboeboam6TobO9jT9bwjW7aLALdPOrY7Z-enxbvGSr1-fl4mGVmVxBzFQusTBFTlJL0tI0pJFmmCQXKs8NAZBoamV0SbIGUxo0QhFJM5ureiaKMYNTrvFDCJ6aauvTp_5QCaiO9VXHrqpjV9WpvoRMTogdttVm2HmXDvzf_g39GnRJ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Huang, Hening</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1882-0042</orcidid></search><sort><creationdate>20180101</creationdate><title>Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations</title><author>Huang, Hening</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-825a3c32e595e95cfe9ae4afe921822ce00e1fd8c96e5d0c6cac18ee5c478d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>interval</topic><topic>small samples</topic><topic>transformation distortion</topic><topic>uncertainty estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hening</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hening</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations</atitle><jtitle>Measurement science & technology</jtitle><stitle>MST</stitle><addtitle>Meas. Sci. Technol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>29</volume><issue>1</issue><spage>15004</spage><pages>15004-</pages><issn>0957-0233</issn><eissn>1361-6501</eissn><coden>MSTCEP</coden><abstract>The conventional approach to estimating measurement uncertainty employs the t-interval when the population standard deviation is unknown and the sample size is small (<30). This is because the t-interval, or t-based uncertainty, is considered to be the 'exact' solution to estimating measurement uncertainty for small samples. However, three paradoxes have been found to be attributable to the t-interval. This paper is the first one (Part I) in a series of two papers (Part I and Part II). It presents some new insights on the t-interval and explores its true underlying meaning. This paper reveals that the t-interval is a result from a distorted statistical inference in the transformed sample space. The transformation distortion is the root cause of extremely high t-scores when the sample size is very small (<5), resulting in unrealistic estimates of uncertainty. This is the fundamental limitation of the t-interval method for uncertainty estimation. Part II will propose a redefinition of uncertainty and a modification of the conventional approach to estimating measurement uncertainty.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6501/aa96c7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1882-0042</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-0233 |
ispartof | Measurement science & technology, 2018-01, Vol.29 (1), p.15004 |
issn | 0957-0233 1361-6501 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6501_aa96c7 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | interval small samples transformation distortion uncertainty estimation |
title | Uncertainty estimation with a small number of measurements, part I: new insights on the t-interval method and its limitations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20estimation%20with%20a%20small%20number%20of%20measurements,%20part%20I:%20new%20insights%20on%20the%20t-interval%20method%20and%20its%20limitations&rft.jtitle=Measurement%20science%20&%20technology&rft.au=Huang,%20Hening&rft.date=2018-01-01&rft.volume=29&rft.issue=1&rft.spage=15004&rft.pages=15004-&rft.issn=0957-0233&rft.eissn=1361-6501&rft.coden=MSTCEP&rft_id=info:doi/10.1088/1361-6501/aa96c7&rft_dat=%3Ciop_cross%3Emstaa96c7%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |