Thermodynamics and dynamics of coupled complex SYK models
It has been known that the large-q complex SYK model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2024-12, Vol.36 (49), p.495601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 49 |
container_start_page | 495601 |
container_title | Journal of physics. Condensed matter |
container_volume | 36 |
creator | Louw, Jan C van Manen, Linda M Jha, Rishabh |
description | It has been known that the large-q complex SYK model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-q complex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-q limit at low temperatures, adhering to the Maldacena-Shenker-Stanford bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the ``very" low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be be taken to make the connection robust. |
doi_str_mv | 10.1088/1361-648X/ad743a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_ad743a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097851389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-7d19a7617772fb63b3dd0541ab11244c3a6dc8947fd1d3a03bb52d1f93d0c08f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMDIT6ck5sj6jiS1RioEgwWY7tiFRJHOJGov-eVCndmF7d6blXuoeQS6C3QIWYA2YQZ0x8zLXlDPURmR5Wx2RKZYqxkIJNyFkIa0opE8hOyQQlSEg4Tolcfbmu9nbb6Lo0IdKNjQ6DLyLj-7Zydsh6yJ_o7fMlGnBXhXNyUugquIt9zsj7w_1q8RQvXx-fF3fL2CQZbGJuQWqeAec8KfIMc7SWpgx0DpAwZlBn1gjJeGHBoqaY52lioZBoqaGiwBm5Hnvbzn_3LmxUXQbjqko3zvdBIZVcpIBCDigdUdP5EDpXqLYra91tFVC1E6Z2dtTOjhqFDSdX-_Y-r509HPwZGoCbESh9q9a-75rh2f_7fgEf-HPV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097851389</pqid></control><display><type>article</type><title>Thermodynamics and dynamics of coupled complex SYK models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Louw, Jan C ; van Manen, Linda M ; Jha, Rishabh</creator><creatorcontrib>Louw, Jan C ; van Manen, Linda M ; Jha, Rishabh</creatorcontrib><description>It has been known that the large-q complex SYK model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-q complex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-q limit at low temperatures, adhering to the Maldacena-Shenker-Stanford bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the ``very" low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be be taken to make the connection robust.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad743a</identifier><identifier>PMID: 39191273</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>critical exponents ; critical phenomena ; exact solutions for many-body systems ; holography ; quantum chaos ; quantum thermodynamics ; SYK model</subject><ispartof>Journal of physics. Condensed matter, 2024-12, Vol.36 (49), p.495601</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-7d19a7617772fb63b3dd0541ab11244c3a6dc8947fd1d3a03bb52d1f93d0c08f3</cites><orcidid>0009-0006-8799-4889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad743a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39191273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Louw, Jan C</creatorcontrib><creatorcontrib>van Manen, Linda M</creatorcontrib><creatorcontrib>Jha, Rishabh</creatorcontrib><title>Thermodynamics and dynamics of coupled complex SYK models</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>It has been known that the large-q complex SYK model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-q complex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-q limit at low temperatures, adhering to the Maldacena-Shenker-Stanford bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the ``very" low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be be taken to make the connection robust.</description><subject>critical exponents</subject><subject>critical phenomena</subject><subject>exact solutions for many-body systems</subject><subject>holography</subject><subject>quantum chaos</subject><subject>quantum thermodynamics</subject><subject>SYK model</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6GMDIT6ck5sj6jiS1RioEgwWY7tiFRJHOJGov-eVCndmF7d6blXuoeQS6C3QIWYA2YQZ0x8zLXlDPURmR5Wx2RKZYqxkIJNyFkIa0opE8hOyQQlSEg4Tolcfbmu9nbb6Lo0IdKNjQ6DLyLj-7Zydsh6yJ_o7fMlGnBXhXNyUugquIt9zsj7w_1q8RQvXx-fF3fL2CQZbGJuQWqeAec8KfIMc7SWpgx0DpAwZlBn1gjJeGHBoqaY52lioZBoqaGiwBm5Hnvbzn_3LmxUXQbjqko3zvdBIZVcpIBCDigdUdP5EDpXqLYra91tFVC1E6Z2dtTOjhqFDSdX-_Y-r509HPwZGoCbESh9q9a-75rh2f_7fgEf-HPV</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Louw, Jan C</creator><creator>van Manen, Linda M</creator><creator>Jha, Rishabh</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0006-8799-4889</orcidid></search><sort><creationdate>20241211</creationdate><title>Thermodynamics and dynamics of coupled complex SYK models</title><author>Louw, Jan C ; van Manen, Linda M ; Jha, Rishabh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-7d19a7617772fb63b3dd0541ab11244c3a6dc8947fd1d3a03bb52d1f93d0c08f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>critical exponents</topic><topic>critical phenomena</topic><topic>exact solutions for many-body systems</topic><topic>holography</topic><topic>quantum chaos</topic><topic>quantum thermodynamics</topic><topic>SYK model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Louw, Jan C</creatorcontrib><creatorcontrib>van Manen, Linda M</creatorcontrib><creatorcontrib>Jha, Rishabh</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Louw, Jan C</au><au>van Manen, Linda M</au><au>Jha, Rishabh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics and dynamics of coupled complex SYK models</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>36</volume><issue>49</issue><spage>495601</spage><pages>495601-</pages><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>It has been known that the large-q complex SYK model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-q complex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-q limit at low temperatures, adhering to the Maldacena-Shenker-Stanford bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the ``very" low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be be taken to make the connection robust.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39191273</pmid><doi>10.1088/1361-648X/ad743a</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0006-8799-4889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2024-12, Vol.36 (49), p.495601 |
issn | 0953-8984 1361-648X 1361-648X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_648X_ad743a |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | critical exponents critical phenomena exact solutions for many-body systems holography quantum chaos quantum thermodynamics SYK model |
title | Thermodynamics and dynamics of coupled complex SYK models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20and%20dynamics%20of%20coupled%20complex%20SYK%20models&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Louw,%20Jan%20C&rft.date=2024-12-11&rft.volume=36&rft.issue=49&rft.spage=495601&rft.pages=495601-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad743a&rft_dat=%3Cproquest_cross%3E3097851389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097851389&rft_id=info:pmid/39191273&rfr_iscdi=true |