Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers

Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2024-08, Vol.36 (33), p.335001
Hauptverfasser: Shan, Zi-Yu, An, Meng, Zhang, Xing, Zhang, Hai, Ma, Wei-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 33
container_start_page 335001
container_title Journal of physics. Condensed matter
container_volume 36
creator Shan, Zi-Yu
An, Meng
Zhang, Xing
Zhang, Hai
Ma, Wei-Gang
description Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (
doi_str_mv 10.1088/1361-648X/ad48ef
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_ad48ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053137978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</originalsourceid><addsrcrecordid>eNp9kMtP3DAQxq2Kqmyh954q3-BAih95OEdAfUlIXKjEzZo4492gxE5tL2gv_dtxupQTQhp5Rv5-80nzEfKZs6-cKXXOZc2LulR359CXCu07snr5OiAr1layUK0qD8nHGO8ZY6WS5QdyKFXDleJiRf5eeh_T4NY0bTBMMFJ0GNY7mgK4OPuQKJjgY1x0OriEwYJB2mF6RHR03kBEajbg1kgnyPIAY6TgejphWsaHAWjE0RYQI07diFnxzo-wwxCPyXubIfz03I_I7-_fbq9-Ftc3P35dXVwXRgqeipIpUfGmEbYzVdNb1VqmTH4qIbqad7Vlsi-hKlVby6pTLQgUDeeiN6yGupNH5HTvOwf_Z4sx6WmIBscRHPpt1JJVksumbVRG2R79d3ZAq-cwTBB2mjO9pK6XiPUSsd6nnle-PLtvuwn7l4X_MWfgbA8Mftb3fhtcPvYtv5NXcDNpWWspc1WMcT33Vj4BFTSblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053137978</pqid></control><display><type>article</type><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</creator><creatorcontrib>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</creatorcontrib><description>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (&lt;40 MW m K ), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m K ) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad48ef</identifier><identifier>PMID: 38718812</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>interface ; molecular dynamics ; phase change material ; self-assembled monolayer ; thermal energy transport</subject><ispartof>Journal of physics. Condensed matter, 2024-08, Vol.36 (33), p.335001</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</cites><orcidid>0000-0002-8047-3152 ; 0000-0002-1560-7329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad48ef/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38718812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shan, Zi-Yu</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><creatorcontrib>Ma, Wei-Gang</creatorcontrib><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (&lt;40 MW m K ), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m K ) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</description><subject>interface</subject><subject>molecular dynamics</subject><subject>phase change material</subject><subject>self-assembled monolayer</subject><subject>thermal energy transport</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtP3DAQxq2Kqmyh954q3-BAih95OEdAfUlIXKjEzZo4492gxE5tL2gv_dtxupQTQhp5Rv5-80nzEfKZs6-cKXXOZc2LulR359CXCu07snr5OiAr1layUK0qD8nHGO8ZY6WS5QdyKFXDleJiRf5eeh_T4NY0bTBMMFJ0GNY7mgK4OPuQKJjgY1x0OriEwYJB2mF6RHR03kBEajbg1kgnyPIAY6TgejphWsaHAWjE0RYQI07diFnxzo-wwxCPyXubIfz03I_I7-_fbq9-Ftc3P35dXVwXRgqeipIpUfGmEbYzVdNb1VqmTH4qIbqad7Vlsi-hKlVby6pTLQgUDeeiN6yGupNH5HTvOwf_Z4sx6WmIBscRHPpt1JJVksumbVRG2R79d3ZAq-cwTBB2mjO9pK6XiPUSsd6nnle-PLtvuwn7l4X_MWfgbA8Mftb3fhtcPvYtv5NXcDNpWWspc1WMcT33Vj4BFTSblA</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Shan, Zi-Yu</creator><creator>An, Meng</creator><creator>Zhang, Xing</creator><creator>Zhang, Hai</creator><creator>Ma, Wei-Gang</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8047-3152</orcidid><orcidid>https://orcid.org/0000-0002-1560-7329</orcidid></search><sort><creationdate>20240821</creationdate><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><author>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>interface</topic><topic>molecular dynamics</topic><topic>phase change material</topic><topic>self-assembled monolayer</topic><topic>thermal energy transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Zi-Yu</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><creatorcontrib>Ma, Wei-Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Zi-Yu</au><au>An, Meng</au><au>Zhang, Xing</au><au>Zhang, Hai</au><au>Ma, Wei-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>335001</spage><pages>335001-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (&lt;40 MW m K ), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m K ) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38718812</pmid><doi>10.1088/1361-648X/ad48ef</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8047-3152</orcidid><orcidid>https://orcid.org/0000-0002-1560-7329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2024-08, Vol.36 (33), p.335001
issn 0953-8984
1361-648X
language eng
recordid cdi_crossref_primary_10_1088_1361_648X_ad48ef
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects interface
molecular dynamics
phase change material
self-assembled monolayer
thermal energy transport
title Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20thermal%20energy%20transport%20across%20the%20interface%20between%20phase%20change%20materials%20and%20metals%20via%20self-assembled%20monolayers&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Shan,%20Zi-Yu&rft.date=2024-08-21&rft.volume=36&rft.issue=33&rft.spage=335001&rft.pages=335001-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad48ef&rft_dat=%3Cproquest_cross%3E3053137978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053137978&rft_id=info:pmid/38718812&rfr_iscdi=true