Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers
Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the the...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2024-08, Vol.36 (33), p.335001 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 33 |
container_start_page | 335001 |
container_title | Journal of physics. Condensed matter |
container_volume | 36 |
creator | Shan, Zi-Yu An, Meng Zhang, Xing Zhang, Hai Ma, Wei-Gang |
description | Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not ( |
doi_str_mv | 10.1088/1361-648X/ad48ef |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_ad48ef</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3053137978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</originalsourceid><addsrcrecordid>eNp9kMtP3DAQxq2Kqmyh954q3-BAih95OEdAfUlIXKjEzZo4492gxE5tL2gv_dtxupQTQhp5Rv5-80nzEfKZs6-cKXXOZc2LulR359CXCu07snr5OiAr1layUK0qD8nHGO8ZY6WS5QdyKFXDleJiRf5eeh_T4NY0bTBMMFJ0GNY7mgK4OPuQKJjgY1x0OriEwYJB2mF6RHR03kBEajbg1kgnyPIAY6TgejphWsaHAWjE0RYQI07diFnxzo-wwxCPyXubIfz03I_I7-_fbq9-Ftc3P35dXVwXRgqeipIpUfGmEbYzVdNb1VqmTH4qIbqad7Vlsi-hKlVby6pTLQgUDeeiN6yGupNH5HTvOwf_Z4sx6WmIBscRHPpt1JJVksumbVRG2R79d3ZAq-cwTBB2mjO9pK6XiPUSsd6nnle-PLtvuwn7l4X_MWfgbA8Mftb3fhtcPvYtv5NXcDNpWWspc1WMcT33Vj4BFTSblA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053137978</pqid></control><display><type>article</type><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</creator><creatorcontrib>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</creatorcontrib><description>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (<40 MW m
K
), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m
K
) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad48ef</identifier><identifier>PMID: 38718812</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>interface ; molecular dynamics ; phase change material ; self-assembled monolayer ; thermal energy transport</subject><ispartof>Journal of physics. Condensed matter, 2024-08, Vol.36 (33), p.335001</ispartof><rights>2024 IOP Publishing Ltd</rights><rights>2024 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</cites><orcidid>0000-0002-8047-3152 ; 0000-0002-1560-7329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/ad48ef/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38718812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shan, Zi-Yu</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><creatorcontrib>Ma, Wei-Gang</creatorcontrib><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (<40 MW m
K
), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m
K
) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</description><subject>interface</subject><subject>molecular dynamics</subject><subject>phase change material</subject><subject>self-assembled monolayer</subject><subject>thermal energy transport</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtP3DAQxq2Kqmyh954q3-BAih95OEdAfUlIXKjEzZo4492gxE5tL2gv_dtxupQTQhp5Rv5-80nzEfKZs6-cKXXOZc2LulR359CXCu07snr5OiAr1layUK0qD8nHGO8ZY6WS5QdyKFXDleJiRf5eeh_T4NY0bTBMMFJ0GNY7mgK4OPuQKJjgY1x0OriEwYJB2mF6RHR03kBEajbg1kgnyPIAY6TgejphWsaHAWjE0RYQI07diFnxzo-wwxCPyXubIfz03I_I7-_fbq9-Ftc3P35dXVwXRgqeipIpUfGmEbYzVdNb1VqmTH4qIbqad7Vlsi-hKlVby6pTLQgUDeeiN6yGupNH5HTvOwf_Z4sx6WmIBscRHPpt1JJVksumbVRG2R79d3ZAq-cwTBB2mjO9pK6XiPUSsd6nnle-PLtvuwn7l4X_MWfgbA8Mftb3fhtcPvYtv5NXcDNpWWspc1WMcT33Vj4BFTSblA</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Shan, Zi-Yu</creator><creator>An, Meng</creator><creator>Zhang, Xing</creator><creator>Zhang, Hai</creator><creator>Ma, Wei-Gang</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8047-3152</orcidid><orcidid>https://orcid.org/0000-0002-1560-7329</orcidid></search><sort><creationdate>20240821</creationdate><title>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</title><author>Shan, Zi-Yu ; An, Meng ; Zhang, Xing ; Zhang, Hai ; Ma, Wei-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-408251772fbc57df89f08c9f0522b61b6f03d4a5489635b89a2e27112dc06a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>interface</topic><topic>molecular dynamics</topic><topic>phase change material</topic><topic>self-assembled monolayer</topic><topic>thermal energy transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Zi-Yu</creatorcontrib><creatorcontrib>An, Meng</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><creatorcontrib>Zhang, Hai</creatorcontrib><creatorcontrib>Ma, Wei-Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Zi-Yu</au><au>An, Meng</au><au>Zhang, Xing</au><au>Zhang, Hai</au><au>Ma, Wei-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>335001</spage><pages>335001-</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Thermal energy storage using phase change materials (PCMs) has great potential to reduce the weather dependency of sustainable energy sources. However, the low thermal conductivity of most PCMs is a long-standing bottleneck for large-scale practical applications. In modifications to increase the thermal conductivity of PCMs, the interfacial thermal resistance (ITR) between PCMs and discrete additives or porous networks reduces the effective thermal energy transport. In this work, we investigated the ITR between a metal (gold) and a polyol solid-liquid PCM (erythritol) at various temperatures including temperatures below the melting point (300 and 350 K), near the melting point (390, 400, 410 K, etc) and above the melting point (450 and 500 K) adopting non-equilibrium molecular dynamics. Since the gold-erythritol interfacial thermal conductance (ITC) is low regardless of whether erythritol is melted or not (<40 MW m
K
), self-assembled monolayers (SAMs) were used to boost the interfacial thermal energy transport. The SAM with carboxyl groups was found to increase the ITC most (by a factor of 7-9). As the temperature increases, the ITC significantly increases (by ∼50 MW m
K
) below the melting point but decreases little above the melting point. Further analysis revealed that the most obvious influencing factor is the interfacial binding energy. This work could build on existing composite PCM solutions to further improve heat transfer efficiency of energy storage applications in both liquid and solid states.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38718812</pmid><doi>10.1088/1361-648X/ad48ef</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8047-3152</orcidid><orcidid>https://orcid.org/0000-0002-1560-7329</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2024-08, Vol.36 (33), p.335001 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_648X_ad48ef |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | interface molecular dynamics phase change material self-assembled monolayer thermal energy transport |
title | Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20thermal%20energy%20transport%20across%20the%20interface%20between%20phase%20change%20materials%20and%20metals%20via%20self-assembled%20monolayers&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Shan,%20Zi-Yu&rft.date=2024-08-21&rft.volume=36&rft.issue=33&rft.spage=335001&rft.pages=335001-&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad48ef&rft_dat=%3Cproquest_cross%3E3053137978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053137978&rft_id=info:pmid/38718812&rfr_iscdi=true |