Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten

An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2017-11, Vol.29 (43), p.435401-435401
Hauptverfasser: Wang, Li-Fang, Shu, Xiaolin, Lu, Guang-Hong, Gao, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435401
container_issue 43
container_start_page 435401
container_title Journal of physics. Condensed matter
container_volume 29
creator Wang, Li-Fang
Shu, Xiaolin
Lu, Guang-Hong
Gao, Fei
description An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties with DFT calculations and available experimental data, as well as all the other tungsten-hydrogen potentials. The new potential accurately reproduces the point defect properties of hydrogen, the interaction among hydrogen atoms, the interplay between hydrogen and a monovacancy, and the thermal diffusion of hydrogen in tungsten. The successful validation of the new potential confirms its good reliability and transferability, which enables large-scale atomistic simulations of tungsten-hydrogen system. The new potential is afterward employed to investigate the interplay between hydrogen and other defects, including [1 1 1] self-interstitial atoms (SIAs) and vacancy clusters in tungsten. It is found that both the [1 1 1] SIAs and the vacancy clusters exhibit considerable attraction for hydrogen. Hydrogen solution and diffusion in strained tungsten are also studied using the present potential, which demonstrates that tensile (compressive) stress facilitates (impedes) hydrogen solution, and isotropic tensile (compressive) stress impedes (facilitates) hydrogen diffusion while anisotropic tensile (compressive) stress facilitates (impedes) hydrogen diffusion.
doi_str_mv 10.1088/1361-648X/aa86bd
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_648X_aa86bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930488782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-70afb0ef4ab9f1de40f865ddcdd45fbfee9c245672b2280534e75e74bcefab883</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwM6GMDITasZM4I6rKQ6rEAhKbsePrNlViF9sZ-u9JldKN6T50zpHOh9AtwY8Ecz4ntCBpwfjXXEpeKH2GpqfXOZriKqcprziboKsQthhjxim7RJOMc1KQspqi72WnQGvQqYyuSzqIG6eTnYtgYyPbxDifdE5D29h1stlr79ZgE2n16Ug1GKhj0tgIXtaxcXbYk9jbdRhSrtGFkW2Am-Ococ_n5cfiNV29v7wtnlZpTTmNaYmlURgMk6oyRAPDhhe51rXWLDfKAFR1xvKizFSWcZxTBmUOJVM1GKk4pzN0P-buvPvpIUTRNaGGtpUWXB8EqejQnpc8G6R4lNbeheDBiJ1vOun3gmBx4CoOEMUBohi5Dpa7Y3qvOtAnwx_IQfAwChq3E1vXezuU_T_vFw3rhTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930488782</pqid></control><display><type>article</type><title>Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Wang, Li-Fang ; Shu, Xiaolin ; Lu, Guang-Hong ; Gao, Fei</creator><creatorcontrib>Wang, Li-Fang ; Shu, Xiaolin ; Lu, Guang-Hong ; Gao, Fei</creatorcontrib><description>An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties with DFT calculations and available experimental data, as well as all the other tungsten-hydrogen potentials. The new potential accurately reproduces the point defect properties of hydrogen, the interaction among hydrogen atoms, the interplay between hydrogen and a monovacancy, and the thermal diffusion of hydrogen in tungsten. The successful validation of the new potential confirms its good reliability and transferability, which enables large-scale atomistic simulations of tungsten-hydrogen system. The new potential is afterward employed to investigate the interplay between hydrogen and other defects, including [1 1 1] self-interstitial atoms (SIAs) and vacancy clusters in tungsten. It is found that both the [1 1 1] SIAs and the vacancy clusters exhibit considerable attraction for hydrogen. Hydrogen solution and diffusion in strained tungsten are also studied using the present potential, which demonstrates that tensile (compressive) stress facilitates (impedes) hydrogen solution, and isotropic tensile (compressive) stress impedes (facilitates) hydrogen diffusion while anisotropic tensile (compressive) stress facilitates (impedes) hydrogen diffusion.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/aa86bd</identifier><identifier>PMID: 28816179</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>defect ; hydrogen ; interatomic potential ; tungsten</subject><ispartof>Journal of physics. Condensed matter, 2017-11, Vol.29 (43), p.435401-435401</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-70afb0ef4ab9f1de40f865ddcdd45fbfee9c245672b2280534e75e74bcefab883</citedby><cites>FETCH-LOGICAL-c383t-70afb0ef4ab9f1de40f865ddcdd45fbfee9c245672b2280534e75e74bcefab883</cites><orcidid>0000-0002-0408-549X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-648X/aa86bd/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28816179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Li-Fang</creatorcontrib><creatorcontrib>Shu, Xiaolin</creatorcontrib><creatorcontrib>Lu, Guang-Hong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><title>Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties with DFT calculations and available experimental data, as well as all the other tungsten-hydrogen potentials. The new potential accurately reproduces the point defect properties of hydrogen, the interaction among hydrogen atoms, the interplay between hydrogen and a monovacancy, and the thermal diffusion of hydrogen in tungsten. The successful validation of the new potential confirms its good reliability and transferability, which enables large-scale atomistic simulations of tungsten-hydrogen system. The new potential is afterward employed to investigate the interplay between hydrogen and other defects, including [1 1 1] self-interstitial atoms (SIAs) and vacancy clusters in tungsten. It is found that both the [1 1 1] SIAs and the vacancy clusters exhibit considerable attraction for hydrogen. Hydrogen solution and diffusion in strained tungsten are also studied using the present potential, which demonstrates that tensile (compressive) stress facilitates (impedes) hydrogen solution, and isotropic tensile (compressive) stress impedes (facilitates) hydrogen diffusion while anisotropic tensile (compressive) stress facilitates (impedes) hydrogen diffusion.</description><subject>defect</subject><subject>hydrogen</subject><subject>interatomic potential</subject><subject>tungsten</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwM6GMDITasZM4I6rKQ6rEAhKbsePrNlViF9sZ-u9JldKN6T50zpHOh9AtwY8Ecz4ntCBpwfjXXEpeKH2GpqfXOZriKqcprziboKsQthhjxim7RJOMc1KQspqi72WnQGvQqYyuSzqIG6eTnYtgYyPbxDifdE5D29h1stlr79ZgE2n16Ug1GKhj0tgIXtaxcXbYk9jbdRhSrtGFkW2Am-Ococ_n5cfiNV29v7wtnlZpTTmNaYmlURgMk6oyRAPDhhe51rXWLDfKAFR1xvKizFSWcZxTBmUOJVM1GKk4pzN0P-buvPvpIUTRNaGGtpUWXB8EqejQnpc8G6R4lNbeheDBiJ1vOun3gmBx4CoOEMUBohi5Dpa7Y3qvOtAnwx_IQfAwChq3E1vXezuU_T_vFw3rhTY</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Wang, Li-Fang</creator><creator>Shu, Xiaolin</creator><creator>Lu, Guang-Hong</creator><creator>Gao, Fei</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0408-549X</orcidid></search><sort><creationdate>20171101</creationdate><title>Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten</title><author>Wang, Li-Fang ; Shu, Xiaolin ; Lu, Guang-Hong ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-70afb0ef4ab9f1de40f865ddcdd45fbfee9c245672b2280534e75e74bcefab883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>defect</topic><topic>hydrogen</topic><topic>interatomic potential</topic><topic>tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li-Fang</creatorcontrib><creatorcontrib>Shu, Xiaolin</creatorcontrib><creatorcontrib>Lu, Guang-Hong</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li-Fang</au><au>Shu, Xiaolin</au><au>Lu, Guang-Hong</au><au>Gao, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>29</volume><issue>43</issue><spage>435401</spage><epage>435401</epage><pages>435401-435401</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>An embedded-atom method potential has been developed for modeling hydrogen in body-centered-cubic (bcc) tungsten by fitting to an extensive database of density functional theory (DFT) calculations. Comprehensive evaluations of the new potential are conducted by comparing various hydrogen properties with DFT calculations and available experimental data, as well as all the other tungsten-hydrogen potentials. The new potential accurately reproduces the point defect properties of hydrogen, the interaction among hydrogen atoms, the interplay between hydrogen and a monovacancy, and the thermal diffusion of hydrogen in tungsten. The successful validation of the new potential confirms its good reliability and transferability, which enables large-scale atomistic simulations of tungsten-hydrogen system. The new potential is afterward employed to investigate the interplay between hydrogen and other defects, including [1 1 1] self-interstitial atoms (SIAs) and vacancy clusters in tungsten. It is found that both the [1 1 1] SIAs and the vacancy clusters exhibit considerable attraction for hydrogen. Hydrogen solution and diffusion in strained tungsten are also studied using the present potential, which demonstrates that tensile (compressive) stress facilitates (impedes) hydrogen solution, and isotropic tensile (compressive) stress impedes (facilitates) hydrogen diffusion while anisotropic tensile (compressive) stress facilitates (impedes) hydrogen diffusion.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28816179</pmid><doi>10.1088/1361-648X/aa86bd</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0408-549X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2017-11, Vol.29 (43), p.435401-435401
issn 0953-8984
1361-648X
language eng
recordid cdi_crossref_primary_10_1088_1361_648X_aa86bd
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects defect
hydrogen
interatomic potential
tungsten
title Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded-atom%20method%20potential%20for%20modeling%20hydrogen%20and%20hydrogen-defect%20interaction%20in%20tungsten&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Wang,%20Li-Fang&rft.date=2017-11-01&rft.volume=29&rft.issue=43&rft.spage=435401&rft.epage=435401&rft.pages=435401-435401&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/aa86bd&rft_dat=%3Cproquest_cross%3E1930488782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930488782&rft_id=info:pmid/28816179&rfr_iscdi=true