Low-energy physics in neutrino LArTPCs
In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillati...
Gespeichert in:
Veröffentlicht in: | Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2023-01, Vol.50 (3), p.33001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 33001 |
container_title | Journal of physics. G, Nuclear and particle physics |
container_volume | 50 |
creator | Andringa, S Asaadi, J Bezerra, J T C Capozzi, F Caratelli, D Cavanna, F Church, E Efremenko, Y Foreman, W Friedland, A Gardiner, S Gil-Botella, I Himmel, A Junk, T Karagiorgi, G Kirby, M Klein, J Lehmann-Miotto, G Lepetic, I T Li, S Littlejohn, B R Mooney, M Reichenbacher, J Sala, P Schellman, H Scholberg, K Sorel, M Sousa, A Wang, J Wang, M H L S Wu, W Yu, J Yang, T Zennamo, J |
description | In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges. |
doi_str_mv | 10.1088/1361-6471/acad17 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6471_acad17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpgacad17</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-af845ca98a65bada2b065418aac720b096eb5e631b939e2399902e37792a5afb3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3j0XQk3VfmqRNjmPMH1DQwzx_pFm6ZWhSkg7Zf29HxZOePvh43heel5BrCg8UpJxRVtK85BWdaaPXtDohk9_XKZmAEjxnUqlzcpHSDgAEZ3xC7urwlVtv4-aQddtDciZlzmfe7vvofMjqeVy9LdIlOWv1R7JXP3dK3h-Xq8VzXr8-vSzmdW44FX2uW8mF0UrqUjR6rYsGSsGp1NpUBTSgStsIWzLaKKZswZRSUFhWVarQQrcNm5KbsTek3mEyrrdma4L31vRIlaJCyAGCETIxpBRti110nzoekAIex8CjOR7NcRxjiNyOERc63IV99IMFblAAMgTGACh263bg7v_g_q39BkX7axs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-energy physics in neutrino LArTPCs</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Andringa, S ; Asaadi, J ; Bezerra, J T C ; Capozzi, F ; Caratelli, D ; Cavanna, F ; Church, E ; Efremenko, Y ; Foreman, W ; Friedland, A ; Gardiner, S ; Gil-Botella, I ; Himmel, A ; Junk, T ; Karagiorgi, G ; Kirby, M ; Klein, J ; Lehmann-Miotto, G ; Lepetic, I T ; Li, S ; Littlejohn, B R ; Mooney, M ; Reichenbacher, J ; Sala, P ; Schellman, H ; Scholberg, K ; Sorel, M ; Sousa, A ; Wang, J ; Wang, M H L S ; Wu, W ; Yu, J ; Yang, T ; Zennamo, J</creator><creatorcontrib>Andringa, S ; Asaadi, J ; Bezerra, J T C ; Capozzi, F ; Caratelli, D ; Cavanna, F ; Church, E ; Efremenko, Y ; Foreman, W ; Friedland, A ; Gardiner, S ; Gil-Botella, I ; Himmel, A ; Junk, T ; Karagiorgi, G ; Kirby, M ; Klein, J ; Lehmann-Miotto, G ; Lepetic, I T ; Li, S ; Littlejohn, B R ; Mooney, M ; Reichenbacher, J ; Sala, P ; Schellman, H ; Scholberg, K ; Sorel, M ; Sousa, A ; Wang, J ; Wang, M H L S ; Wu, W ; Yu, J ; Yang, T ; Zennamo, J ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.</description><identifier>ISSN: 0954-3899</identifier><identifier>EISSN: 1361-6471</identifier><identifier>DOI: 10.1088/1361-6471/acad17</identifier><identifier>CODEN: JPGPED</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>LArTPC ; neutrino ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; physics</subject><ispartof>Journal of physics. G, Nuclear and particle physics, 2023-01, Vol.50 (3), p.33001</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-af845ca98a65bada2b065418aac720b096eb5e631b939e2399902e37792a5afb3</citedby><cites>FETCH-LOGICAL-c415t-af845ca98a65bada2b065418aac720b096eb5e631b939e2399902e37792a5afb3</cites><orcidid>0000-0003-1680-1104 ; 0000-0002-8368-5898 ; 0000-0003-1703-7486 ; 0000-0003-1041-0735 ; 0000-0002-5047-4680 ; 0000-0002-5234-6308 ; 0000-0002-6912-9684 ; 0000000283685898 ; 0000000269129684 ; 0000000317037486 ; 0000000250474680 ; 0000000252346308 ; 0000000310410735 ; 0000000316801104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6471/acad17/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1991558$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Andringa, S</creatorcontrib><creatorcontrib>Asaadi, J</creatorcontrib><creatorcontrib>Bezerra, J T C</creatorcontrib><creatorcontrib>Capozzi, F</creatorcontrib><creatorcontrib>Caratelli, D</creatorcontrib><creatorcontrib>Cavanna, F</creatorcontrib><creatorcontrib>Church, E</creatorcontrib><creatorcontrib>Efremenko, Y</creatorcontrib><creatorcontrib>Foreman, W</creatorcontrib><creatorcontrib>Friedland, A</creatorcontrib><creatorcontrib>Gardiner, S</creatorcontrib><creatorcontrib>Gil-Botella, I</creatorcontrib><creatorcontrib>Himmel, A</creatorcontrib><creatorcontrib>Junk, T</creatorcontrib><creatorcontrib>Karagiorgi, G</creatorcontrib><creatorcontrib>Kirby, M</creatorcontrib><creatorcontrib>Klein, J</creatorcontrib><creatorcontrib>Lehmann-Miotto, G</creatorcontrib><creatorcontrib>Lepetic, I T</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Littlejohn, B R</creatorcontrib><creatorcontrib>Mooney, M</creatorcontrib><creatorcontrib>Reichenbacher, J</creatorcontrib><creatorcontrib>Sala, P</creatorcontrib><creatorcontrib>Schellman, H</creatorcontrib><creatorcontrib>Scholberg, K</creatorcontrib><creatorcontrib>Sorel, M</creatorcontrib><creatorcontrib>Sousa, A</creatorcontrib><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Wang, M H L S</creatorcontrib><creatorcontrib>Wu, W</creatorcontrib><creatorcontrib>Yu, J</creatorcontrib><creatorcontrib>Yang, T</creatorcontrib><creatorcontrib>Zennamo, J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Low-energy physics in neutrino LArTPCs</title><title>Journal of physics. G, Nuclear and particle physics</title><addtitle>JPG</addtitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><description>In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.</description><subject>LArTPC</subject><subject>neutrino</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>physics</subject><issn>0954-3899</issn><issn>1361-6471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3j0XQk3VfmqRNjmPMH1DQwzx_pFm6ZWhSkg7Zf29HxZOePvh43heel5BrCg8UpJxRVtK85BWdaaPXtDohk9_XKZmAEjxnUqlzcpHSDgAEZ3xC7urwlVtv4-aQddtDciZlzmfe7vvofMjqeVy9LdIlOWv1R7JXP3dK3h-Xq8VzXr8-vSzmdW44FX2uW8mF0UrqUjR6rYsGSsGp1NpUBTSgStsIWzLaKKZswZRSUFhWVarQQrcNm5KbsTek3mEyrrdma4L31vRIlaJCyAGCETIxpBRti110nzoekAIex8CjOR7NcRxjiNyOERc63IV99IMFblAAMgTGACh263bg7v_g_q39BkX7axs</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Andringa, S</creator><creator>Asaadi, J</creator><creator>Bezerra, J T C</creator><creator>Capozzi, F</creator><creator>Caratelli, D</creator><creator>Cavanna, F</creator><creator>Church, E</creator><creator>Efremenko, Y</creator><creator>Foreman, W</creator><creator>Friedland, A</creator><creator>Gardiner, S</creator><creator>Gil-Botella, I</creator><creator>Himmel, A</creator><creator>Junk, T</creator><creator>Karagiorgi, G</creator><creator>Kirby, M</creator><creator>Klein, J</creator><creator>Lehmann-Miotto, G</creator><creator>Lepetic, I T</creator><creator>Li, S</creator><creator>Littlejohn, B R</creator><creator>Mooney, M</creator><creator>Reichenbacher, J</creator><creator>Sala, P</creator><creator>Schellman, H</creator><creator>Scholberg, K</creator><creator>Sorel, M</creator><creator>Sousa, A</creator><creator>Wang, J</creator><creator>Wang, M H L S</creator><creator>Wu, W</creator><creator>Yu, J</creator><creator>Yang, T</creator><creator>Zennamo, J</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1680-1104</orcidid><orcidid>https://orcid.org/0000-0002-8368-5898</orcidid><orcidid>https://orcid.org/0000-0003-1703-7486</orcidid><orcidid>https://orcid.org/0000-0003-1041-0735</orcidid><orcidid>https://orcid.org/0000-0002-5047-4680</orcidid><orcidid>https://orcid.org/0000-0002-5234-6308</orcidid><orcidid>https://orcid.org/0000-0002-6912-9684</orcidid><orcidid>https://orcid.org/0000000283685898</orcidid><orcidid>https://orcid.org/0000000269129684</orcidid><orcidid>https://orcid.org/0000000317037486</orcidid><orcidid>https://orcid.org/0000000250474680</orcidid><orcidid>https://orcid.org/0000000252346308</orcidid><orcidid>https://orcid.org/0000000310410735</orcidid><orcidid>https://orcid.org/0000000316801104</orcidid></search><sort><creationdate>20230101</creationdate><title>Low-energy physics in neutrino LArTPCs</title><author>Andringa, S ; Asaadi, J ; Bezerra, J T C ; Capozzi, F ; Caratelli, D ; Cavanna, F ; Church, E ; Efremenko, Y ; Foreman, W ; Friedland, A ; Gardiner, S ; Gil-Botella, I ; Himmel, A ; Junk, T ; Karagiorgi, G ; Kirby, M ; Klein, J ; Lehmann-Miotto, G ; Lepetic, I T ; Li, S ; Littlejohn, B R ; Mooney, M ; Reichenbacher, J ; Sala, P ; Schellman, H ; Scholberg, K ; Sorel, M ; Sousa, A ; Wang, J ; Wang, M H L S ; Wu, W ; Yu, J ; Yang, T ; Zennamo, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-af845ca98a65bada2b065418aac720b096eb5e631b939e2399902e37792a5afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>LArTPC</topic><topic>neutrino</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andringa, S</creatorcontrib><creatorcontrib>Asaadi, J</creatorcontrib><creatorcontrib>Bezerra, J T C</creatorcontrib><creatorcontrib>Capozzi, F</creatorcontrib><creatorcontrib>Caratelli, D</creatorcontrib><creatorcontrib>Cavanna, F</creatorcontrib><creatorcontrib>Church, E</creatorcontrib><creatorcontrib>Efremenko, Y</creatorcontrib><creatorcontrib>Foreman, W</creatorcontrib><creatorcontrib>Friedland, A</creatorcontrib><creatorcontrib>Gardiner, S</creatorcontrib><creatorcontrib>Gil-Botella, I</creatorcontrib><creatorcontrib>Himmel, A</creatorcontrib><creatorcontrib>Junk, T</creatorcontrib><creatorcontrib>Karagiorgi, G</creatorcontrib><creatorcontrib>Kirby, M</creatorcontrib><creatorcontrib>Klein, J</creatorcontrib><creatorcontrib>Lehmann-Miotto, G</creatorcontrib><creatorcontrib>Lepetic, I T</creatorcontrib><creatorcontrib>Li, S</creatorcontrib><creatorcontrib>Littlejohn, B R</creatorcontrib><creatorcontrib>Mooney, M</creatorcontrib><creatorcontrib>Reichenbacher, J</creatorcontrib><creatorcontrib>Sala, P</creatorcontrib><creatorcontrib>Schellman, H</creatorcontrib><creatorcontrib>Scholberg, K</creatorcontrib><creatorcontrib>Sorel, M</creatorcontrib><creatorcontrib>Sousa, A</creatorcontrib><creatorcontrib>Wang, J</creatorcontrib><creatorcontrib>Wang, M H L S</creatorcontrib><creatorcontrib>Wu, W</creatorcontrib><creatorcontrib>Yu, J</creatorcontrib><creatorcontrib>Yang, T</creatorcontrib><creatorcontrib>Zennamo, J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andringa, S</au><au>Asaadi, J</au><au>Bezerra, J T C</au><au>Capozzi, F</au><au>Caratelli, D</au><au>Cavanna, F</au><au>Church, E</au><au>Efremenko, Y</au><au>Foreman, W</au><au>Friedland, A</au><au>Gardiner, S</au><au>Gil-Botella, I</au><au>Himmel, A</au><au>Junk, T</au><au>Karagiorgi, G</au><au>Kirby, M</au><au>Klein, J</au><au>Lehmann-Miotto, G</au><au>Lepetic, I T</au><au>Li, S</au><au>Littlejohn, B R</au><au>Mooney, M</au><au>Reichenbacher, J</au><au>Sala, P</au><au>Schellman, H</au><au>Scholberg, K</au><au>Sorel, M</au><au>Sousa, A</au><au>Wang, J</au><au>Wang, M H L S</au><au>Wu, W</au><au>Yu, J</au><au>Yang, T</au><au>Zennamo, J</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-energy physics in neutrino LArTPCs</atitle><jtitle>Journal of physics. G, Nuclear and particle physics</jtitle><stitle>JPG</stitle><addtitle>J. Phys. G: Nucl. Part. Phys</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>50</volume><issue>3</issue><spage>33001</spage><pages>33001-</pages><issn>0954-3899</issn><eissn>1361-6471</eissn><coden>JPGPED</coden><abstract>In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/1361-6471/acad17</doi><tpages>60</tpages><orcidid>https://orcid.org/0000-0003-1680-1104</orcidid><orcidid>https://orcid.org/0000-0002-8368-5898</orcidid><orcidid>https://orcid.org/0000-0003-1703-7486</orcidid><orcidid>https://orcid.org/0000-0003-1041-0735</orcidid><orcidid>https://orcid.org/0000-0002-5047-4680</orcidid><orcidid>https://orcid.org/0000-0002-5234-6308</orcidid><orcidid>https://orcid.org/0000-0002-6912-9684</orcidid><orcidid>https://orcid.org/0000000283685898</orcidid><orcidid>https://orcid.org/0000000269129684</orcidid><orcidid>https://orcid.org/0000000317037486</orcidid><orcidid>https://orcid.org/0000000250474680</orcidid><orcidid>https://orcid.org/0000000252346308</orcidid><orcidid>https://orcid.org/0000000310410735</orcidid><orcidid>https://orcid.org/0000000316801104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-3899 |
ispartof | Journal of physics. G, Nuclear and particle physics, 2023-01, Vol.50 (3), p.33001 |
issn | 0954-3899 1361-6471 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6471_acad17 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | LArTPC neutrino NUCLEAR PHYSICS AND RADIATION PHYSICS physics |
title | Low-energy physics in neutrino LArTPCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-energy%20physics%20in%20neutrino%20LArTPCs&rft.jtitle=Journal%20of%20physics.%20G,%20Nuclear%20and%20particle%20physics&rft.au=Andringa,%20S&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-01-01&rft.volume=50&rft.issue=3&rft.spage=33001&rft.pages=33001-&rft.issn=0954-3899&rft.eissn=1361-6471&rft.coden=JPGPED&rft_id=info:doi/10.1088/1361-6471/acad17&rft_dat=%3Ciop_cross%3Ejpgacad17%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |