Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films
Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this stu...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2024-11, Vol.57 (45), p.455202 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 45 |
container_start_page | 455202 |
container_title | Journal of physics. D, Applied physics |
container_volume | 57 |
creator | Farghali, Abdelrahman Iwasa, Kazutoki Kim, Jongduk Choi, Junho |
description | Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles. |
doi_str_mv | 10.1088/1361-6463/ad67ec |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ad67ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dad67ec</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgunr3mJMn6yZNkybHZfELCl72Hl7z4XZpm5q0B_31bql4EuHBg3kzj5lB6JaSB0qk3FAmaCYKwTZgRenMGVr9QudoRUieZ6zMy0t0ldKREMKFpCtUbcfQNQYnA63DqQthPDT9Ow4e99CHBf6YII5fuAutxVOaz9CFOBzClLCBWIce-6bt0jW68NAmd_Oz12j_9LjfvWTV2_PrbltlhqpizMABU5SRGihRpTGWOSuUopQTV0ufG04949yCI7KQqlBWikJBTSVYCZKtEVnemhhSis7rITYdxE9NiZ7L0HNyPSfXSxknyf0iacKgj2GK_cnff_S7P-hW81IX_DQ8J7kerGffflhujg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</creator><creatorcontrib>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</creatorcontrib><description>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ad67ec</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>amorphous carbon film ; MD simulation ; quartz mold ; surface smoothing</subject><ispartof>Journal of physics. D, Applied physics, 2024-11, Vol.57 (45), p.455202</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</cites><orcidid>0000-0002-2837-6187 ; 0000-0001-7211-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ad67ec/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Farghali, Abdelrahman</creatorcontrib><creatorcontrib>Iwasa, Kazutoki</creatorcontrib><creatorcontrib>Kim, Jongduk</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</description><subject>amorphous carbon film</subject><subject>MD simulation</subject><subject>quartz mold</subject><subject>surface smoothing</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLgunr3mJMn6yZNkybHZfELCl72Hl7z4XZpm5q0B_31bql4EuHBg3kzj5lB6JaSB0qk3FAmaCYKwTZgRenMGVr9QudoRUieZ6zMy0t0ldKREMKFpCtUbcfQNQYnA63DqQthPDT9Ow4e99CHBf6YII5fuAutxVOaz9CFOBzClLCBWIce-6bt0jW68NAmd_Oz12j_9LjfvWTV2_PrbltlhqpizMABU5SRGihRpTGWOSuUopQTV0ufG04949yCI7KQqlBWikJBTSVYCZKtEVnemhhSis7rITYdxE9NiZ7L0HNyPSfXSxknyf0iacKgj2GK_cnff_S7P-hW81IX_DQ8J7kerGffflhujg</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Farghali, Abdelrahman</creator><creator>Iwasa, Kazutoki</creator><creator>Kim, Jongduk</creator><creator>Choi, Junho</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2837-6187</orcidid><orcidid>https://orcid.org/0000-0001-7211-7679</orcidid></search><sort><creationdate>20241115</creationdate><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><author>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amorphous carbon film</topic><topic>MD simulation</topic><topic>quartz mold</topic><topic>surface smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farghali, Abdelrahman</creatorcontrib><creatorcontrib>Iwasa, Kazutoki</creatorcontrib><creatorcontrib>Kim, Jongduk</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farghali, Abdelrahman</au><au>Iwasa, Kazutoki</au><au>Kim, Jongduk</au><au>Choi, Junho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>57</volume><issue>45</issue><spage>455202</spage><pages>455202-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ad67ec</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2837-6187</orcidid><orcidid>https://orcid.org/0000-0001-7211-7679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2024-11, Vol.57 (45), p.455202 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6463_ad67ec |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | amorphous carbon film MD simulation quartz mold surface smoothing |
title | Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20scale%20smoothing%20of%20nanoscale%20quartz%20mold%20using%20amorphous%20carbon%20films&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Farghali,%20Abdelrahman&rft.date=2024-11-15&rft.volume=57&rft.issue=45&rft.spage=455202&rft.pages=455202-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ad67ec&rft_dat=%3Ciop_cross%3Edad67ec%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |