Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films

Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2024-11, Vol.57 (45), p.455202
Hauptverfasser: Farghali, Abdelrahman, Iwasa, Kazutoki, Kim, Jongduk, Choi, Junho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 45
container_start_page 455202
container_title Journal of physics. D, Applied physics
container_volume 57
creator Farghali, Abdelrahman
Iwasa, Kazutoki
Kim, Jongduk
Choi, Junho
description Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.
doi_str_mv 10.1088/1361-6463/ad67ec
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ad67ec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dad67ec</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgunr3mJMn6yZNkybHZfELCl72Hl7z4XZpm5q0B_31bql4EuHBg3kzj5lB6JaSB0qk3FAmaCYKwTZgRenMGVr9QudoRUieZ6zMy0t0ldKREMKFpCtUbcfQNQYnA63DqQthPDT9Ow4e99CHBf6YII5fuAutxVOaz9CFOBzClLCBWIce-6bt0jW68NAmd_Oz12j_9LjfvWTV2_PrbltlhqpizMABU5SRGihRpTGWOSuUopQTV0ufG04949yCI7KQqlBWikJBTSVYCZKtEVnemhhSis7rITYdxE9NiZ7L0HNyPSfXSxknyf0iacKgj2GK_cnff_S7P-hW81IX_DQ8J7kerGffflhujg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</creator><creatorcontrib>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</creatorcontrib><description>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ad67ec</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>amorphous carbon film ; MD simulation ; quartz mold ; surface smoothing</subject><ispartof>Journal of physics. D, Applied physics, 2024-11, Vol.57 (45), p.455202</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</cites><orcidid>0000-0002-2837-6187 ; 0000-0001-7211-7679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ad67ec/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Farghali, Abdelrahman</creatorcontrib><creatorcontrib>Iwasa, Kazutoki</creatorcontrib><creatorcontrib>Kim, Jongduk</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</description><subject>amorphous carbon film</subject><subject>MD simulation</subject><subject>quartz mold</subject><subject>surface smoothing</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLgunr3mJMn6yZNkybHZfELCl72Hl7z4XZpm5q0B_31bql4EuHBg3kzj5lB6JaSB0qk3FAmaCYKwTZgRenMGVr9QudoRUieZ6zMy0t0ldKREMKFpCtUbcfQNQYnA63DqQthPDT9Ow4e99CHBf6YII5fuAutxVOaz9CFOBzClLCBWIce-6bt0jW68NAmd_Oz12j_9LjfvWTV2_PrbltlhqpizMABU5SRGihRpTGWOSuUopQTV0ufG04949yCI7KQqlBWikJBTSVYCZKtEVnemhhSis7rITYdxE9NiZ7L0HNyPSfXSxknyf0iacKgj2GK_cnff_S7P-hW81IX_DQ8J7kerGffflhujg</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Farghali, Abdelrahman</creator><creator>Iwasa, Kazutoki</creator><creator>Kim, Jongduk</creator><creator>Choi, Junho</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2837-6187</orcidid><orcidid>https://orcid.org/0000-0001-7211-7679</orcidid></search><sort><creationdate>20241115</creationdate><title>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</title><author>Farghali, Abdelrahman ; Iwasa, Kazutoki ; Kim, Jongduk ; Choi, Junho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-aea39130ba1097ccd3ed6991150eb8f2c51f355dae0848949d8649ab18ad8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>amorphous carbon film</topic><topic>MD simulation</topic><topic>quartz mold</topic><topic>surface smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farghali, Abdelrahman</creatorcontrib><creatorcontrib>Iwasa, Kazutoki</creatorcontrib><creatorcontrib>Kim, Jongduk</creatorcontrib><creatorcontrib>Choi, Junho</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farghali, Abdelrahman</au><au>Iwasa, Kazutoki</au><au>Kim, Jongduk</au><au>Choi, Junho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>57</volume><issue>45</issue><spage>455202</spage><pages>455202-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Surface roughness control of end products is increasingly becoming significant, especially with the miniaturization trends in the semiconductor industry. Ultra-thin amorphous carbon (a-C) films offer a prime solution to optimize surface roughness due to their outstanding characteristics. In this study, hydrogenated a-C films are deposited on two-dimensional quartz plates and three-dimensional quartz molds to evaluate the growth mechanisms and changes in the surface roughness, which is supported by molecular dynamics simulations. Results reveal that surface roughness encounters multiple variations until it reaches stable values. These fluctuations are categorized into four different stages which provide a concrete understanding of various growing mechanisms at each stage. Different behavior of the atoms in the top layers is recorded in the cases of normal and grazing incidents of carbon atoms. Lower surface roughness values are obtained at low-angle deposition. Interestingly, surface smoothing is attained on the sidewalls of the nanotrench mold where the deposition occurs with high incident ion angles.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ad67ec</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2837-6187</orcidid><orcidid>https://orcid.org/0000-0001-7211-7679</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2024-11, Vol.57 (45), p.455202
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ad67ec
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects amorphous carbon film
MD simulation
quartz mold
surface smoothing
title Atomic scale smoothing of nanoscale quartz mold using amorphous carbon films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20scale%20smoothing%20of%20nanoscale%20quartz%20mold%20using%20amorphous%20carbon%20films&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Farghali,%20Abdelrahman&rft.date=2024-11-15&rft.volume=57&rft.issue=45&rft.spage=455202&rft.pages=455202-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ad67ec&rft_dat=%3Ciop_cross%3Edad67ec%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true