A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature

MXene Ti 3 C 2 T x (30% HF-etched, named Ti 3 C 2 T x -30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO 3 ). Additionally, as the surface MoO 3 molecules come into contact with reducing gas moieties, they actively participate in gas s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2024-08, Vol.57 (32), p.325101
Hauptverfasser: Kale, Shravani, Sabale, Dhanashri, Srivastava, Rajat, Londhe, Vaishali Phatak, Kale, S N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 32
container_start_page 325101
container_title Journal of physics. D, Applied physics
container_volume 57
creator Kale, Shravani
Sabale, Dhanashri
Srivastava, Rajat
Londhe, Vaishali Phatak
Kale, S N
description MXene Ti 3 C 2 T x (30% HF-etched, named Ti 3 C 2 T x -30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO 3 ). Additionally, as the surface MoO 3 molecules come into contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti 3 C 2 T x -30 in the MoO 3 matrix was varied at 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements and evolution of TiO 2 at a higher percentage of Ti 3 C 2 T x -30. Spectroscopy analysis showed the interactions between Ti 3 C 2 T x -30 and MoO 3 , showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed a high response (93% for 100 ppm) at room temperature, with a response time of ∼10 s. Compared to bare MoO 3 , these samples showed ten-fold improvement. The excess electrons on the surface of Ti 3 C 2 T x -30 facilitate the formation of O 2− species, which also provides stability to the otherwise highly reactive MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO 3 , thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of an optimum percentage of optimized Ti 3 C 2 T x .
doi_str_mv 10.1088/1361-6463/ad436b
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ad436b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6463_ad436b</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1088_1361_6463_ad436b3</originalsourceid><addsrcrecordid>eNqdz71OxDAQBGALgUT46Sn3BcLZ8ZFLi_gRzYmGgs7aSzaRT2dvtGuQ7u0hAvEAVCONZorPmBtnb53tupXzravbdetXOKx9uzsx1V91aiprm6b2m2Zzbi5U99bau7Zzldnfgx4zyRS1xB56TruYsUTOwCM0j7B9p0yAeYAtv4KHjJlnlO_xgRRGFohpFv6kASZUUMoa8wRYQJgTFEozCZYPoStzNuJB6fo3L419fnp7eKl7YVWhMcwSE8oxOBsWU1gAYQGEH5P_x-ULHxxVrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kale, Shravani ; Sabale, Dhanashri ; Srivastava, Rajat ; Londhe, Vaishali Phatak ; Kale, S N</creator><creatorcontrib>Kale, Shravani ; Sabale, Dhanashri ; Srivastava, Rajat ; Londhe, Vaishali Phatak ; Kale, S N</creatorcontrib><description>MXene Ti 3 C 2 T x (30% HF-etched, named Ti 3 C 2 T x -30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO 3 ). Additionally, as the surface MoO 3 molecules come into contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti 3 C 2 T x -30 in the MoO 3 matrix was varied at 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements and evolution of TiO 2 at a higher percentage of Ti 3 C 2 T x -30. Spectroscopy analysis showed the interactions between Ti 3 C 2 T x -30 and MoO 3 , showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed a high response (93% for 100 ppm) at room temperature, with a response time of ∼10 s. Compared to bare MoO 3 , these samples showed ten-fold improvement. The excess electrons on the surface of Ti 3 C 2 T x -30 facilitate the formation of O 2− species, which also provides stability to the otherwise highly reactive MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO 3 , thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of an optimum percentage of optimized Ti 3 C 2 T x .</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ad436b</identifier><language>eng</language><ispartof>Journal of physics. D, Applied physics, 2024-08, Vol.57 (32), p.325101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1088_1361_6463_ad436b3</cites><orcidid>0000-0002-5842-0310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kale, Shravani</creatorcontrib><creatorcontrib>Sabale, Dhanashri</creatorcontrib><creatorcontrib>Srivastava, Rajat</creatorcontrib><creatorcontrib>Londhe, Vaishali Phatak</creatorcontrib><creatorcontrib>Kale, S N</creatorcontrib><title>A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature</title><title>Journal of physics. D, Applied physics</title><description>MXene Ti 3 C 2 T x (30% HF-etched, named Ti 3 C 2 T x -30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO 3 ). Additionally, as the surface MoO 3 molecules come into contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti 3 C 2 T x -30 in the MoO 3 matrix was varied at 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements and evolution of TiO 2 at a higher percentage of Ti 3 C 2 T x -30. Spectroscopy analysis showed the interactions between Ti 3 C 2 T x -30 and MoO 3 , showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed a high response (93% for 100 ppm) at room temperature, with a response time of ∼10 s. Compared to bare MoO 3 , these samples showed ten-fold improvement. The excess electrons on the surface of Ti 3 C 2 T x -30 facilitate the formation of O 2− species, which also provides stability to the otherwise highly reactive MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO 3 , thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of an optimum percentage of optimized Ti 3 C 2 T x .</description><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdz71OxDAQBGALgUT46Sn3BcLZ8ZFLi_gRzYmGgs7aSzaRT2dvtGuQ7u0hAvEAVCONZorPmBtnb53tupXzravbdetXOKx9uzsx1V91aiprm6b2m2Zzbi5U99bau7Zzldnfgx4zyRS1xB56TruYsUTOwCM0j7B9p0yAeYAtv4KHjJlnlO_xgRRGFohpFv6kASZUUMoa8wRYQJgTFEozCZYPoStzNuJB6fo3L419fnp7eKl7YVWhMcwSE8oxOBsWU1gAYQGEH5P_x-ULHxxVrg</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Kale, Shravani</creator><creator>Sabale, Dhanashri</creator><creator>Srivastava, Rajat</creator><creator>Londhe, Vaishali Phatak</creator><creator>Kale, S N</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5842-0310</orcidid></search><sort><creationdate>20240816</creationdate><title>A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature</title><author>Kale, Shravani ; Sabale, Dhanashri ; Srivastava, Rajat ; Londhe, Vaishali Phatak ; Kale, S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1088_1361_6463_ad436b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kale, Shravani</creatorcontrib><creatorcontrib>Sabale, Dhanashri</creatorcontrib><creatorcontrib>Srivastava, Rajat</creatorcontrib><creatorcontrib>Londhe, Vaishali Phatak</creatorcontrib><creatorcontrib>Kale, S N</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kale, Shravani</au><au>Sabale, Dhanashri</au><au>Srivastava, Rajat</au><au>Londhe, Vaishali Phatak</au><au>Kale, S N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2024-08-16</date><risdate>2024</risdate><volume>57</volume><issue>32</issue><spage>325101</spage><pages>325101-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><abstract>MXene Ti 3 C 2 T x (30% HF-etched, named Ti 3 C 2 T x -30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO 3 ). Additionally, as the surface MoO 3 molecules come into contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti 3 C 2 T x -30 in the MoO 3 matrix was varied at 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements and evolution of TiO 2 at a higher percentage of Ti 3 C 2 T x -30. Spectroscopy analysis showed the interactions between Ti 3 C 2 T x -30 and MoO 3 , showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed a high response (93% for 100 ppm) at room temperature, with a response time of ∼10 s. Compared to bare MoO 3 , these samples showed ten-fold improvement. The excess electrons on the surface of Ti 3 C 2 T x -30 facilitate the formation of O 2− species, which also provides stability to the otherwise highly reactive MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO 3 , thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of an optimum percentage of optimized Ti 3 C 2 T x .</abstract><doi>10.1088/1361-6463/ad436b</doi><orcidid>https://orcid.org/0000-0002-5842-0310</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2024-08, Vol.57 (32), p.325101
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ad436b
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title A synergistic combination of 2D MXene and MoO 3 nanoparticles for improved gas sensing at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synergistic%20combination%20of%202D%20MXene%20and%20MoO%203%20nanoparticles%20for%20improved%20gas%20sensing%20at%20room%20temperature&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Kale,%20Shravani&rft.date=2024-08-16&rft.volume=57&rft.issue=32&rft.spage=325101&rft.pages=325101-&rft.issn=0022-3727&rft.eissn=1361-6463&rft_id=info:doi/10.1088/1361-6463/ad436b&rft_dat=%3Ccrossref%3E10_1088_1361_6463_ad436b%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true