Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress

In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2022-03, Vol.55 (10), p.105107
Hauptverfasser: Hillier, Joseph, Ibukuro, Kouta, Liu, Fayong, Husain Khaled, Muhammad, Byers, James, Nicholas Rutt, Harvey, Tomita, Isao, Tsuchiya, Yoshishige, Saito, Shinichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105107
container_title Journal of physics. D, Applied physics
container_volume 55
creator Hillier, Joseph
Ibukuro, Kouta
Liu, Fayong
Husain Khaled, Muhammad
Byers, James
Nicholas Rutt, Harvey
Tomita, Isao
Tsuchiya, Yoshishige
Saito, Shinichi
description In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.
doi_str_mv 10.1088/1361-6463/ac3da9
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ac3da9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dac3da9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3piItQfcZyOqIJSqagDMFtXxymuUifYTqWKfx5XASbE9HR373d3eghdU3JHSVlOKC9oVuQFn4DmFUxP0Oi3dYpGhDCWccnkOboIYUsIEUVJR-hz4fYmRLuBaN0Ghwhr29h4wOAqHHv3U7Y1_ujBxX6Hqzbi6MGFrvURW4dDsujW4efVy-PDa8B7Czi-GwxdlwZpcZol3jRGR58aTTrjTQiX6KyGJpirbx2jt8TPnrLlar6Y3S8zzQWPGee6JHmeS5MLKYzWlErOGWVAhUxaAqUFBy7rNSO0EoTJac4KKiu9JgA5HyMy7NW-DcGbWnXe7sAfFCXqGJ46JqWOSakhvITcDohtO7Vte-_Sg__Zb_6wV0qIgRGUSNVVNf8Cxv5-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><source>Institute of Physics Journals</source><creator>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</creator><creatorcontrib>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</creatorcontrib><description>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ac3da9</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>charging energy ; Coulomb blockade ; electrical stress ; interface disorder ; MOSFET ; quantum dot ; reversible trap</subject><ispartof>Journal of physics. D, Applied physics, 2022-03, Vol.55 (10), p.105107</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</citedby><cites>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</cites><orcidid>0000-0003-4418-0819 ; 0000-0002-6546-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ac3da9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Hillier, Joseph</creatorcontrib><creatorcontrib>Ibukuro, Kouta</creatorcontrib><creatorcontrib>Liu, Fayong</creatorcontrib><creatorcontrib>Husain Khaled, Muhammad</creatorcontrib><creatorcontrib>Byers, James</creatorcontrib><creatorcontrib>Nicholas Rutt, Harvey</creatorcontrib><creatorcontrib>Tomita, Isao</creatorcontrib><creatorcontrib>Tsuchiya, Yoshishige</creatorcontrib><creatorcontrib>Saito, Shinichi</creatorcontrib><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</description><subject>charging energy</subject><subject>Coulomb blockade</subject><subject>electrical stress</subject><subject>interface disorder</subject><subject>MOSFET</subject><subject>quantum dot</subject><subject>reversible trap</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwM3piItQfcZyOqIJSqagDMFtXxymuUifYTqWKfx5XASbE9HR373d3eghdU3JHSVlOKC9oVuQFn4DmFUxP0Oi3dYpGhDCWccnkOboIYUsIEUVJR-hz4fYmRLuBaN0Ghwhr29h4wOAqHHv3U7Y1_ujBxX6Hqzbi6MGFrvURW4dDsujW4efVy-PDa8B7Czi-GwxdlwZpcZol3jRGR58aTTrjTQiX6KyGJpirbx2jt8TPnrLlar6Y3S8zzQWPGee6JHmeS5MLKYzWlErOGWVAhUxaAqUFBy7rNSO0EoTJac4KKiu9JgA5HyMy7NW-DcGbWnXe7sAfFCXqGJ46JqWOSakhvITcDohtO7Vte-_Sg__Zb_6wV0qIgRGUSNVVNf8Cxv5-ng</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Hillier, Joseph</creator><creator>Ibukuro, Kouta</creator><creator>Liu, Fayong</creator><creator>Husain Khaled, Muhammad</creator><creator>Byers, James</creator><creator>Nicholas Rutt, Harvey</creator><creator>Tomita, Isao</creator><creator>Tsuchiya, Yoshishige</creator><creator>Saito, Shinichi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4418-0819</orcidid><orcidid>https://orcid.org/0000-0002-6546-8873</orcidid></search><sort><creationdate>20220310</creationdate><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><author>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>charging energy</topic><topic>Coulomb blockade</topic><topic>electrical stress</topic><topic>interface disorder</topic><topic>MOSFET</topic><topic>quantum dot</topic><topic>reversible trap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillier, Joseph</creatorcontrib><creatorcontrib>Ibukuro, Kouta</creatorcontrib><creatorcontrib>Liu, Fayong</creatorcontrib><creatorcontrib>Husain Khaled, Muhammad</creatorcontrib><creatorcontrib>Byers, James</creatorcontrib><creatorcontrib>Nicholas Rutt, Harvey</creatorcontrib><creatorcontrib>Tomita, Isao</creatorcontrib><creatorcontrib>Tsuchiya, Yoshishige</creatorcontrib><creatorcontrib>Saito, Shinichi</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillier, Joseph</au><au>Ibukuro, Kouta</au><au>Liu, Fayong</au><au>Husain Khaled, Muhammad</au><au>Byers, James</au><au>Nicholas Rutt, Harvey</au><au>Tomita, Isao</au><au>Tsuchiya, Yoshishige</au><au>Saito, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2022-03-10</date><risdate>2022</risdate><volume>55</volume><issue>10</issue><spage>105107</spage><pages>105107-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ac3da9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4418-0819</orcidid><orcidid>https://orcid.org/0000-0002-6546-8873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2022-03, Vol.55 (10), p.105107
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ac3da9
source Institute of Physics Journals
subjects charging energy
Coulomb blockade
electrical stress
interface disorder
MOSFET
quantum dot
reversible trap
title Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20stability%20and%20tunability%20of%20quantum%20dot%20transport%20in%20silicon%20MOSFETs%20via%20the%20application%20of%20electrical%20stress&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Hillier,%20Joseph&rft.date=2022-03-10&rft.volume=55&rft.issue=10&rft.spage=105107&rft.pages=105107-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ac3da9&rft_dat=%3Ciop_cross%3Edac3da9%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true