Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress
In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of T = 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide in...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2022-03, Vol.55 (10), p.105107 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 105107 |
container_title | Journal of physics. D, Applied physics |
container_volume | 55 |
creator | Hillier, Joseph Ibukuro, Kouta Liu, Fayong Husain Khaled, Muhammad Byers, James Nicholas Rutt, Harvey Tomita, Isao Tsuchiya, Yoshishige Saito, Shinichi |
description | In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of
T
= 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications. |
doi_str_mv | 10.1088/1361-6463/ac3da9 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ac3da9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dac3da9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM3piItQfcZyOqIJSqagDMFtXxymuUifYTqWKfx5XASbE9HR373d3eghdU3JHSVlOKC9oVuQFn4DmFUxP0Oi3dYpGhDCWccnkOboIYUsIEUVJR-hz4fYmRLuBaN0Ghwhr29h4wOAqHHv3U7Y1_ujBxX6Hqzbi6MGFrvURW4dDsujW4efVy-PDa8B7Czi-GwxdlwZpcZol3jRGR58aTTrjTQiX6KyGJpirbx2jt8TPnrLlar6Y3S8zzQWPGee6JHmeS5MLKYzWlErOGWVAhUxaAqUFBy7rNSO0EoTJac4KKiu9JgA5HyMy7NW-DcGbWnXe7sAfFCXqGJ46JqWOSakhvITcDohtO7Vte-_Sg__Zb_6wV0qIgRGUSNVVNf8Cxv5-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><source>Institute of Physics Journals</source><creator>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</creator><creatorcontrib>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</creatorcontrib><description>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of
T
= 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ac3da9</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>charging energy ; Coulomb blockade ; electrical stress ; interface disorder ; MOSFET ; quantum dot ; reversible trap</subject><ispartof>Journal of physics. D, Applied physics, 2022-03, Vol.55 (10), p.105107</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</citedby><cites>FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</cites><orcidid>0000-0003-4418-0819 ; 0000-0002-6546-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ac3da9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Hillier, Joseph</creatorcontrib><creatorcontrib>Ibukuro, Kouta</creatorcontrib><creatorcontrib>Liu, Fayong</creatorcontrib><creatorcontrib>Husain Khaled, Muhammad</creatorcontrib><creatorcontrib>Byers, James</creatorcontrib><creatorcontrib>Nicholas Rutt, Harvey</creatorcontrib><creatorcontrib>Tomita, Isao</creatorcontrib><creatorcontrib>Tsuchiya, Yoshishige</creatorcontrib><creatorcontrib>Saito, Shinichi</creatorcontrib><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of
T
= 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</description><subject>charging energy</subject><subject>Coulomb blockade</subject><subject>electrical stress</subject><subject>interface disorder</subject><subject>MOSFET</subject><subject>quantum dot</subject><subject>reversible trap</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwM3piItQfcZyOqIJSqagDMFtXxymuUifYTqWKfx5XASbE9HR373d3eghdU3JHSVlOKC9oVuQFn4DmFUxP0Oi3dYpGhDCWccnkOboIYUsIEUVJR-hz4fYmRLuBaN0Ghwhr29h4wOAqHHv3U7Y1_ujBxX6Hqzbi6MGFrvURW4dDsujW4efVy-PDa8B7Czi-GwxdlwZpcZol3jRGR58aTTrjTQiX6KyGJpirbx2jt8TPnrLlar6Y3S8zzQWPGee6JHmeS5MLKYzWlErOGWVAhUxaAqUFBy7rNSO0EoTJac4KKiu9JgA5HyMy7NW-DcGbWnXe7sAfFCXqGJ46JqWOSakhvITcDohtO7Vte-_Sg__Zb_6wV0qIgRGUSNVVNf8Cxv5-ng</recordid><startdate>20220310</startdate><enddate>20220310</enddate><creator>Hillier, Joseph</creator><creator>Ibukuro, Kouta</creator><creator>Liu, Fayong</creator><creator>Husain Khaled, Muhammad</creator><creator>Byers, James</creator><creator>Nicholas Rutt, Harvey</creator><creator>Tomita, Isao</creator><creator>Tsuchiya, Yoshishige</creator><creator>Saito, Shinichi</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4418-0819</orcidid><orcidid>https://orcid.org/0000-0002-6546-8873</orcidid></search><sort><creationdate>20220310</creationdate><title>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</title><author>Hillier, Joseph ; Ibukuro, Kouta ; Liu, Fayong ; Husain Khaled, Muhammad ; Byers, James ; Nicholas Rutt, Harvey ; Tomita, Isao ; Tsuchiya, Yoshishige ; Saito, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-33c804447e4575ecc11733212a1573218a1163a37fb201d5027942617dcb0aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>charging energy</topic><topic>Coulomb blockade</topic><topic>electrical stress</topic><topic>interface disorder</topic><topic>MOSFET</topic><topic>quantum dot</topic><topic>reversible trap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillier, Joseph</creatorcontrib><creatorcontrib>Ibukuro, Kouta</creatorcontrib><creatorcontrib>Liu, Fayong</creatorcontrib><creatorcontrib>Husain Khaled, Muhammad</creatorcontrib><creatorcontrib>Byers, James</creatorcontrib><creatorcontrib>Nicholas Rutt, Harvey</creatorcontrib><creatorcontrib>Tomita, Isao</creatorcontrib><creatorcontrib>Tsuchiya, Yoshishige</creatorcontrib><creatorcontrib>Saito, Shinichi</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillier, Joseph</au><au>Ibukuro, Kouta</au><au>Liu, Fayong</au><au>Husain Khaled, Muhammad</au><au>Byers, James</au><au>Nicholas Rutt, Harvey</au><au>Tomita, Isao</au><au>Tsuchiya, Yoshishige</au><au>Saito, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2022-03-10</date><risdate>2022</risdate><volume>55</volume><issue>10</issue><spage>105107</spage><pages>105107-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>In this work, we experimentally investigate the impact of electrical stress on the tunability of single hole transport properties within a p-type silicon MOSFET at a temperature of
T
= 2 K. This is achieved by monitoring Coulomb-blockade from three disorder based quantum dots at the channel-oxide interface, which are known to lack tunability as a result of their stochastic origin. Our findings indicate that when applying gate biases between −4 V and −4.6 V, nearby charge trapping enhances Coulomb-blockade leading to a stronger quantum dot confinement that can be reversed to the initial device condition after performing a thermal cycle reset. Re-applying stress then gives rise to a predictable response from reproducible changes in the quantum dot charging characteristics with consistent charging energy increases of up to ≈50% being observed. We reach a threshold above gate biases of −4.6 V, where the performance and stability become reduced due to device degradation occurring as a product of large-scale trap generation. The results not only suggest stress as an effective technique to enhance and reset charging properties but also offer insight on how standard industrial silicon devices can be harnessed for single charge transport applications.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ac3da9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4418-0819</orcidid><orcidid>https://orcid.org/0000-0002-6546-8873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2022-03, Vol.55 (10), p.105107 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6463_ac3da9 |
source | Institute of Physics Journals |
subjects | charging energy Coulomb blockade electrical stress interface disorder MOSFET quantum dot reversible trap |
title | Investigating stability and tunability of quantum dot transport in silicon MOSFETs via the application of electrical stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20stability%20and%20tunability%20of%20quantum%20dot%20transport%20in%20silicon%20MOSFETs%20via%20the%20application%20of%20electrical%20stress&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Hillier,%20Joseph&rft.date=2022-03-10&rft.volume=55&rft.issue=10&rft.spage=105107&rft.pages=105107-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ac3da9&rft_dat=%3Ciop_cross%3Edac3da9%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |