Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory

Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2020-07, Vol.53 (29), p.295106
Hauptverfasser: Calixto, M, Maldonado, D, Miranda, E, Roldán, J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 29
container_start_page 295106
container_title Journal of physics. D, Applied physics
container_volume 53
creator Calixto, M
Maldonado, D
Miranda, E
Roldán, J B
description Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.
doi_str_mv 10.1088/1361-6463/ab85e5
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ab85e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dab85e5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmNw55gfQJjTNml6RBMwpCEucK7SzGGZ1qYkKdP-Pa2GuHGybL33bH-E3HK456DUgueSM1nIfKEbJVCckdnf6JzMALKM5WVWXpKrGHcAIKTiM3J49Rvcu-6TekvTFmnCtseg0xCQorVoUqSuo9btdYtd0uHI0rFHGjC6mNw30nhwyWyniBZbHxxGOsSp_Rp0l4aW9t51iRk_uk2alvhwvCYXVu8j3vzWOfl4enxfrtj67fll-bBmJlOQWFVJozaiQA5Nkxe2wYLbopJc6VIoo7kQsuCaw0Y1RoKpgBteIIhRUkpj8zmBU64JPsaAtu6Da8cvag71BK6eKNUTpfoEbrTcnSzO9_XOD6EbD_xf_gOSlnI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><source>Institute of Physics Journals</source><creator>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</creator><creatorcontrib>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</creatorcontrib><description>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ab85e5</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>conductive filaments ; quantum point contact ; resistive random access memories ; resistive switching memory ; tunneling effects ; variability</subject><ispartof>Journal of physics. D, Applied physics, 2020-07, Vol.53 (29), p.295106</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</citedby><cites>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</cites><orcidid>0000-0002-2566-9590 ; 0000-0003-1662-6457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ab85e5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Calixto, M</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Miranda, E</creatorcontrib><creatorcontrib>Roldán, J B</creatorcontrib><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</description><subject>conductive filaments</subject><subject>quantum point contact</subject><subject>resistive random access memories</subject><subject>resistive switching memory</subject><subject>tunneling effects</subject><subject>variability</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmNw55gfQJjTNml6RBMwpCEucK7SzGGZ1qYkKdP-Pa2GuHGybL33bH-E3HK456DUgueSM1nIfKEbJVCckdnf6JzMALKM5WVWXpKrGHcAIKTiM3J49Rvcu-6TekvTFmnCtseg0xCQorVoUqSuo9btdYtd0uHI0rFHGjC6mNw30nhwyWyniBZbHxxGOsSp_Rp0l4aW9t51iRk_uk2alvhwvCYXVu8j3vzWOfl4enxfrtj67fll-bBmJlOQWFVJozaiQA5Nkxe2wYLbopJc6VIoo7kQsuCaw0Y1RoKpgBteIIhRUkpj8zmBU64JPsaAtu6Da8cvag71BK6eKNUTpfoEbrTcnSzO9_XOD6EbD_xf_gOSlnI2</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Calixto, M</creator><creator>Maldonado, D</creator><creator>Miranda, E</creator><creator>Roldán, J B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2566-9590</orcidid><orcidid>https://orcid.org/0000-0003-1662-6457</orcidid></search><sort><creationdate>20200715</creationdate><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><author>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>conductive filaments</topic><topic>quantum point contact</topic><topic>resistive random access memories</topic><topic>resistive switching memory</topic><topic>tunneling effects</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calixto, M</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Miranda, E</creatorcontrib><creatorcontrib>Roldán, J B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calixto, M</au><au>Maldonado, D</au><au>Miranda, E</au><au>Roldán, J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>53</volume><issue>29</issue><spage>295106</spage><pages>295106-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ab85e5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2566-9590</orcidid><orcidid>https://orcid.org/0000-0003-1662-6457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2020-07, Vol.53 (29), p.295106
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ab85e5
source Institute of Physics Journals
subjects conductive filaments
quantum point contact
resistive random access memories
resistive switching memory
tunneling effects
variability
title Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20temperature%20effects%20in%20filamentary-type%20resistive%20switching%20memories%20using%20quantum%20point-contact%20theory&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Calixto,%20M&rft.date=2020-07-15&rft.volume=53&rft.issue=29&rft.spage=295106&rft.pages=295106-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ab85e5&rft_dat=%3Ciop_cross%3Edab85e5%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true