Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory
Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2020-07, Vol.53 (29), p.295106 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 29 |
container_start_page | 295106 |
container_title | Journal of physics. D, Applied physics |
container_volume | 53 |
creator | Calixto, M Maldonado, D Miranda, E Roldán, J B |
description | Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed. |
doi_str_mv | 10.1088/1361-6463/ab85e5 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ab85e5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>dab85e5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmNw55gfQJjTNml6RBMwpCEucK7SzGGZ1qYkKdP-Pa2GuHGybL33bH-E3HK456DUgueSM1nIfKEbJVCckdnf6JzMALKM5WVWXpKrGHcAIKTiM3J49Rvcu-6TekvTFmnCtseg0xCQorVoUqSuo9btdYtd0uHI0rFHGjC6mNw30nhwyWyniBZbHxxGOsSp_Rp0l4aW9t51iRk_uk2alvhwvCYXVu8j3vzWOfl4enxfrtj67fll-bBmJlOQWFVJozaiQA5Nkxe2wYLbopJc6VIoo7kQsuCaw0Y1RoKpgBteIIhRUkpj8zmBU64JPsaAtu6Da8cvag71BK6eKNUTpfoEbrTcnSzO9_XOD6EbD_xf_gOSlnI2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><source>Institute of Physics Journals</source><creator>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</creator><creatorcontrib>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</creatorcontrib><description>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ab85e5</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>conductive filaments ; quantum point contact ; resistive random access memories ; resistive switching memory ; tunneling effects ; variability</subject><ispartof>Journal of physics. D, Applied physics, 2020-07, Vol.53 (29), p.295106</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</citedby><cites>FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</cites><orcidid>0000-0002-2566-9590 ; 0000-0003-1662-6457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ab85e5/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Calixto, M</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Miranda, E</creatorcontrib><creatorcontrib>Roldán, J B</creatorcontrib><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</description><subject>conductive filaments</subject><subject>quantum point contact</subject><subject>resistive random access memories</subject><subject>resistive switching memory</subject><subject>tunneling effects</subject><subject>variability</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmNw55gfQJjTNml6RBMwpCEucK7SzGGZ1qYkKdP-Pa2GuHGybL33bH-E3HK456DUgueSM1nIfKEbJVCckdnf6JzMALKM5WVWXpKrGHcAIKTiM3J49Rvcu-6TekvTFmnCtseg0xCQorVoUqSuo9btdYtd0uHI0rFHGjC6mNw30nhwyWyniBZbHxxGOsSp_Rp0l4aW9t51iRk_uk2alvhwvCYXVu8j3vzWOfl4enxfrtj67fll-bBmJlOQWFVJozaiQA5Nkxe2wYLbopJc6VIoo7kQsuCaw0Y1RoKpgBteIIhRUkpj8zmBU64JPsaAtu6Da8cvag71BK6eKNUTpfoEbrTcnSzO9_XOD6EbD_xf_gOSlnI2</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Calixto, M</creator><creator>Maldonado, D</creator><creator>Miranda, E</creator><creator>Roldán, J B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2566-9590</orcidid><orcidid>https://orcid.org/0000-0003-1662-6457</orcidid></search><sort><creationdate>20200715</creationdate><title>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</title><author>Calixto, M ; Maldonado, D ; Miranda, E ; Roldán, J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-996c8d54e10bb34fbe41f49618a758ca155641a10d8bc60c901c14e0596176cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>conductive filaments</topic><topic>quantum point contact</topic><topic>resistive random access memories</topic><topic>resistive switching memory</topic><topic>tunneling effects</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calixto, M</creatorcontrib><creatorcontrib>Maldonado, D</creatorcontrib><creatorcontrib>Miranda, E</creatorcontrib><creatorcontrib>Roldán, J B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calixto, M</au><au>Maldonado, D</au><au>Miranda, E</au><au>Roldán, J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2020-07-15</date><risdate>2020</risdate><volume>53</volume><issue>29</issue><spage>295106</spage><pages>295106-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Electron transport in filamentary-type resistive switching memories is modeled using quantum point-contact theory. The filament is represented by a parabolic-shaped tube-like constriction in which the first quantized subband behaves as a one-dimensional tunneling barrier. Computation of the current flowing through the atomic-sized structure is carried out by means of the finite-bias Landauer approach. Different approximations for the barrier transmission coefficient are assessed with the aim of determining the role played by the temperature of the charge reservoirs. In order to corroborate the proposed model, current-voltage measurements in electroformed Ni/HfO2/Si devices operating in the non-linear transport regime were performed in the temperature range from −40 C to 200 C. Obtained results using inverse modeling indicate that a temperature-induced barrier lowering effect explains the experimental observations. Finally, the model proposed to calculate the device current including the temperature dependence is developed.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ab85e5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2566-9590</orcidid><orcidid>https://orcid.org/0000-0003-1662-6457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2020-07, Vol.53 (29), p.295106 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6463_ab85e5 |
source | Institute of Physics Journals |
subjects | conductive filaments quantum point contact resistive random access memories resistive switching memory tunneling effects variability |
title | Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20temperature%20effects%20in%20filamentary-type%20resistive%20switching%20memories%20using%20quantum%20point-contact%20theory&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Calixto,%20M&rft.date=2020-07-15&rft.volume=53&rft.issue=29&rft.spage=295106&rft.pages=295106-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ab85e5&rft_dat=%3Ciop_cross%3Edab85e5%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |