Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study

The formation and growth of helium-filled cavities in silicon have been investigated using both molecular dynamics simulations and rate equation cluster dynamics calculations. This multiscale approach allowed us to identify atomic scale mechanisms involved in nucleation and early growth steps, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2019-11, Vol.52 (45), p.455106
Hauptverfasser: Pizzagalli, Laurent, Dérès, Julien, David, Marie-Laure, Jourdan, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 45
container_start_page 455106
container_title Journal of physics. D, Applied physics
container_volume 52
creator Pizzagalli, Laurent
Dérès, Julien
David, Marie-Laure
Jourdan, Thomas
description The formation and growth of helium-filled cavities in silicon have been investigated using both molecular dynamics simulations and rate equation cluster dynamics calculations. This multiscale approach allowed us to identify atomic scale mechanisms involved in nucleation and early growth steps, and to follow their dynamics over experimental timescales. We especially focus our analyses on the influence of helium. Our results first suggest that both Ostwald ripening and migration-coalescence mechanisms are jointly activated during bubble growth. We also discover that an original mechanism, based on the splitting of bubbles, could have a significant contribution. Overall, helium atoms are found to delay growth, proportionally to their concentration. This can be clearly observed at the nanosecond timescale. However, for longer timescales, cluster dynamics calculations also reveal periods of accelerated growth for specific helium concentrations. Finally, it is determined that the main effect of Si interstitials is to impede bubble growth, due to an early recombination with vacancies.
doi_str_mv 10.1088/1361-6463/ab3816
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_ab3816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02299410v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ca568ecbe405cc7d23b53bd2d46a88c15af296a7082ae3b0ae4ea38d08b9d7703</originalsourceid><addsrcrecordid>eNp1kMtLAzEQh4MoWKt3jzkJgmvz2EfqrRS1hYIXPYe8tpuSTcpmV-l_b5YVTwqBIcP3G2Y-AG4xesSIsQWmJc7KvKQLISnD5RmY_bbOwQwhQjJakeoSXMV4QAgVJcMzoLe-doPxysBQw8Y4O7QweNg3BvpBOSN6m77Ca7jvwlffjJgcpHQmQuthtM6q4J-ggO3gehuVcAa2QRvnrN_D2A_6dA0uauGiufmpc_Dx8vy-3mS7t9fterXLFGVVnymRdjJKmhwVSlWaUFlQqYnOS8GYwoWoybIUFWJEGCqRMLkRlGnE5FJXFaJzcD_NbYTjx862ojvxICzfrHZ87CUJy2WO0SdOLJpY1YUYO1P_BjDio1E-6uOjPj4ZTZG7KWLDkR_C0Pl0DNe8IDwv0iswKvlR1wl8-AP8d-43u1CEMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Pizzagalli, Laurent ; Dérès, Julien ; David, Marie-Laure ; Jourdan, Thomas</creator><creatorcontrib>Pizzagalli, Laurent ; Dérès, Julien ; David, Marie-Laure ; Jourdan, Thomas</creatorcontrib><description>The formation and growth of helium-filled cavities in silicon have been investigated using both molecular dynamics simulations and rate equation cluster dynamics calculations. This multiscale approach allowed us to identify atomic scale mechanisms involved in nucleation and early growth steps, and to follow their dynamics over experimental timescales. We especially focus our analyses on the influence of helium. Our results first suggest that both Ostwald ripening and migration-coalescence mechanisms are jointly activated during bubble growth. We also discover that an original mechanism, based on the splitting of bubbles, could have a significant contribution. Overall, helium atoms are found to delay growth, proportionally to their concentration. This can be clearly observed at the nanosecond timescale. However, for longer timescales, cluster dynamics calculations also reveal periods of accelerated growth for specific helium concentrations. Finally, it is determined that the main effect of Si interstitials is to impede bubble growth, due to an early recombination with vacancies.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/ab3816</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>cavities ; Condensed Matter ; irradiation ; Materials Science ; molecular dynamics ; Physics ; rate equation cluster dynamics ; semiconductors</subject><ispartof>Journal of physics. D, Applied physics, 2019-11, Vol.52 (45), p.455106</ispartof><rights>2019 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ca568ecbe405cc7d23b53bd2d46a88c15af296a7082ae3b0ae4ea38d08b9d7703</citedby><cites>FETCH-LOGICAL-c387t-ca568ecbe405cc7d23b53bd2d46a88c15af296a7082ae3b0ae4ea38d08b9d7703</cites><orcidid>0000-0002-1400-901X ; 0000-0003-3207-068X ; 0000-0001-6135-9701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/ab3816/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02299410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pizzagalli, Laurent</creatorcontrib><creatorcontrib>Dérès, Julien</creatorcontrib><creatorcontrib>David, Marie-Laure</creatorcontrib><creatorcontrib>Jourdan, Thomas</creatorcontrib><title>Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>The formation and growth of helium-filled cavities in silicon have been investigated using both molecular dynamics simulations and rate equation cluster dynamics calculations. This multiscale approach allowed us to identify atomic scale mechanisms involved in nucleation and early growth steps, and to follow their dynamics over experimental timescales. We especially focus our analyses on the influence of helium. Our results first suggest that both Ostwald ripening and migration-coalescence mechanisms are jointly activated during bubble growth. We also discover that an original mechanism, based on the splitting of bubbles, could have a significant contribution. Overall, helium atoms are found to delay growth, proportionally to their concentration. This can be clearly observed at the nanosecond timescale. However, for longer timescales, cluster dynamics calculations also reveal periods of accelerated growth for specific helium concentrations. Finally, it is determined that the main effect of Si interstitials is to impede bubble growth, due to an early recombination with vacancies.</description><subject>cavities</subject><subject>Condensed Matter</subject><subject>irradiation</subject><subject>Materials Science</subject><subject>molecular dynamics</subject><subject>Physics</subject><subject>rate equation cluster dynamics</subject><subject>semiconductors</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQh4MoWKt3jzkJgmvz2EfqrRS1hYIXPYe8tpuSTcpmV-l_b5YVTwqBIcP3G2Y-AG4xesSIsQWmJc7KvKQLISnD5RmY_bbOwQwhQjJakeoSXMV4QAgVJcMzoLe-doPxysBQw8Y4O7QweNg3BvpBOSN6m77Ca7jvwlffjJgcpHQmQuthtM6q4J-ggO3gehuVcAa2QRvnrN_D2A_6dA0uauGiufmpc_Dx8vy-3mS7t9fterXLFGVVnymRdjJKmhwVSlWaUFlQqYnOS8GYwoWoybIUFWJEGCqRMLkRlGnE5FJXFaJzcD_NbYTjx862ojvxICzfrHZ87CUJy2WO0SdOLJpY1YUYO1P_BjDio1E-6uOjPj4ZTZG7KWLDkR_C0Pl0DNe8IDwv0iswKvlR1wl8-AP8d-43u1CEMg</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Pizzagalli, Laurent</creator><creator>Dérès, Julien</creator><creator>David, Marie-Laure</creator><creator>Jourdan, Thomas</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1400-901X</orcidid><orcidid>https://orcid.org/0000-0003-3207-068X</orcidid><orcidid>https://orcid.org/0000-0001-6135-9701</orcidid></search><sort><creationdate>20191106</creationdate><title>Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study</title><author>Pizzagalli, Laurent ; Dérès, Julien ; David, Marie-Laure ; Jourdan, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ca568ecbe405cc7d23b53bd2d46a88c15af296a7082ae3b0ae4ea38d08b9d7703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cavities</topic><topic>Condensed Matter</topic><topic>irradiation</topic><topic>Materials Science</topic><topic>molecular dynamics</topic><topic>Physics</topic><topic>rate equation cluster dynamics</topic><topic>semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pizzagalli, Laurent</creatorcontrib><creatorcontrib>Dérès, Julien</creatorcontrib><creatorcontrib>David, Marie-Laure</creatorcontrib><creatorcontrib>Jourdan, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pizzagalli, Laurent</au><au>Dérès, Julien</au><au>David, Marie-Laure</au><au>Jourdan, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2019-11-06</date><risdate>2019</risdate><volume>52</volume><issue>45</issue><spage>455106</spage><pages>455106-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The formation and growth of helium-filled cavities in silicon have been investigated using both molecular dynamics simulations and rate equation cluster dynamics calculations. This multiscale approach allowed us to identify atomic scale mechanisms involved in nucleation and early growth steps, and to follow their dynamics over experimental timescales. We especially focus our analyses on the influence of helium. Our results first suggest that both Ostwald ripening and migration-coalescence mechanisms are jointly activated during bubble growth. We also discover that an original mechanism, based on the splitting of bubbles, could have a significant contribution. Overall, helium atoms are found to delay growth, proportionally to their concentration. This can be clearly observed at the nanosecond timescale. However, for longer timescales, cluster dynamics calculations also reveal periods of accelerated growth for specific helium concentrations. Finally, it is determined that the main effect of Si interstitials is to impede bubble growth, due to an early recombination with vacancies.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/ab3816</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1400-901X</orcidid><orcidid>https://orcid.org/0000-0003-3207-068X</orcidid><orcidid>https://orcid.org/0000-0001-6135-9701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2019-11, Vol.52 (45), p.455106
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_ab3816
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects cavities
Condensed Matter
irradiation
Materials Science
molecular dynamics
Physics
rate equation cluster dynamics
semiconductors
title Influence of helium on the nucleation and growth of bubbles in silicon: a multiscale modelling study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20helium%20on%20the%20nucleation%20and%20growth%20of%20bubbles%20in%20silicon:%20a%20multiscale%20modelling%20study&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Pizzagalli,%20Laurent&rft.date=2019-11-06&rft.volume=52&rft.issue=45&rft.spage=455106&rft.pages=455106-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/ab3816&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02299410v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true