Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes

Atmospheric pressure plasma jet (APPJ) has shown excellent potential prospects in biomedical applications, based on the production of reactive oxygen species and reactive nitrogen species (RNS) from APPJ emissions. The current research focused on the protective effect of APPJ on oxygen and glucose d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2019-03, Vol.52 (13), p.135401
Hauptverfasser: Yan, Xu, Zhang, Chenyang, Ouyang, Jiting, Meng, Zhaozhong, Shi, Zhongfang, Wang, Yujiao, Chen, Ye, Yuan, Fang, Ostrikov, Kostya (Ken)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 135401
container_title Journal of physics. D, Applied physics
container_volume 52
creator Yan, Xu
Zhang, Chenyang
Ouyang, Jiting
Meng, Zhaozhong
Shi, Zhongfang
Wang, Yujiao
Chen, Ye
Yuan, Fang
Ostrikov, Kostya (Ken)
description Atmospheric pressure plasma jet (APPJ) has shown excellent potential prospects in biomedical applications, based on the production of reactive oxygen species and reactive nitrogen species (RNS) from APPJ emissions. The current research focused on the protective effect of APPJ on oxygen and glucose deprivation (OGD)-induced cell death in both the H9C2 cardiac myoblast cell line, a frequently used cardiac cell line in cardioprotective studies, and primary neonatal rat cardiomyocytes (NRCMs). Cells were treated with APPJ for different durations, cultured for 6 h and then subjected to OGD for 18 h before their use in assays. We found that APPJ treatment could maintain H9C2 cell viability and reduce cell apoptosis in a dose-dependent manner in cells subjected to the OGD conditions. To confirm the cardioprotective effect of APPJ on primary NRCM, we first identified the 'safe dose' of APPJ treatment by evaluating the cytotoxicity of APPJ on primary NRCMs in normal culture conditions. Under the 'safe dose' of APPJ treatment, we also found that the APPJ treatment could maintain NRCM viability under OGD conditions and reduce CK-MB and cTnI release from cardiomyocytes. Further studies revealed that the cytoprotective effect of APPJ may be related to NO production induced by APPJ treatment. Our results gave the first evidence of the cardiotoxicity and cytoprotective effect of APPJ on cardiomyocytes against OGD injury, and furthermore, contributed to new insights into the potential medical applications of plasma in cardiovascular diseases.
doi_str_mv 10.1088/1361-6463/aafe9a
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_aafe9a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daafe9a</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7e94724e9cd0c41dd790c9eee0960025afed65ff11d698bbdbf65ced1699b1773</originalsourceid><addsrcrecordid>eNp1kEtr3TAQhUVpobdp913Oqqu4kfyQrWW45FEIZJOuhSyNchVsyUhyiP9Wf2F0c0NXLQxoGJ1zOHyEfGf0J6PDcMEazire8uZCKYtCfSC7v6ePZEdpXVdNX_efyZeUniilHR_YjvzZbzksMWTU2T0joLVlg2BB5Tmk5YDRaVgiprRGhANObp1hmVSaFQQP4WV7RA_KG3icVh0SgsElumeVXfCV82bVaEDjNJUPlQ_gPNyKfQ1aReOUhnkLY4nL6S2kWGcVN_AYvMpqgqjySRqKUG8Z01fyyaop4bf394z8vr562N9Wd_c3v_aXd5Vu2iFXPYq2r1sU2lDdMmN6QbVARCp4odEVSoZ31jJmuBjG0YyWd6Ur40KMrO-bM0JPuTqGlCJa-V5OMiqPzOURsDwClifmxfLjZHFhkU9hjb4UlEZ2ddGW6VrK5GJsEZ7_Q_jf3FfghpZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yan, Xu ; Zhang, Chenyang ; Ouyang, Jiting ; Meng, Zhaozhong ; Shi, Zhongfang ; Wang, Yujiao ; Chen, Ye ; Yuan, Fang ; Ostrikov, Kostya (Ken)</creator><creatorcontrib>Yan, Xu ; Zhang, Chenyang ; Ouyang, Jiting ; Meng, Zhaozhong ; Shi, Zhongfang ; Wang, Yujiao ; Chen, Ye ; Yuan, Fang ; Ostrikov, Kostya (Ken)</creatorcontrib><description>Atmospheric pressure plasma jet (APPJ) has shown excellent potential prospects in biomedical applications, based on the production of reactive oxygen species and reactive nitrogen species (RNS) from APPJ emissions. The current research focused on the protective effect of APPJ on oxygen and glucose deprivation (OGD)-induced cell death in both the H9C2 cardiac myoblast cell line, a frequently used cardiac cell line in cardioprotective studies, and primary neonatal rat cardiomyocytes (NRCMs). Cells were treated with APPJ for different durations, cultured for 6 h and then subjected to OGD for 18 h before their use in assays. We found that APPJ treatment could maintain H9C2 cell viability and reduce cell apoptosis in a dose-dependent manner in cells subjected to the OGD conditions. To confirm the cardioprotective effect of APPJ on primary NRCM, we first identified the 'safe dose' of APPJ treatment by evaluating the cytotoxicity of APPJ on primary NRCMs in normal culture conditions. Under the 'safe dose' of APPJ treatment, we also found that the APPJ treatment could maintain NRCM viability under OGD conditions and reduce CK-MB and cTnI release from cardiomyocytes. Further studies revealed that the cytoprotective effect of APPJ may be related to NO production induced by APPJ treatment. Our results gave the first evidence of the cardiotoxicity and cytoprotective effect of APPJ on cardiomyocytes against OGD injury, and furthermore, contributed to new insights into the potential medical applications of plasma in cardiovascular diseases.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aafe9a</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>apoptosis ; atmospheric pressure plasma ; cardiomyocytes ; nitric oxide ; oxygen glucose deprivation</subject><ispartof>Journal of physics. D, Applied physics, 2019-03, Vol.52 (13), p.135401</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-7e94724e9cd0c41dd790c9eee0960025afed65ff11d698bbdbf65ced1699b1773</citedby><cites>FETCH-LOGICAL-c348t-7e94724e9cd0c41dd790c9eee0960025afed65ff11d698bbdbf65ced1699b1773</cites><orcidid>0000-0002-0072-4258 ; 0000-0002-8532-0497 ; 0000-0001-8672-9297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aafe9a/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27929,27930,53851,53898</link.rule.ids></links><search><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Ouyang, Jiting</creatorcontrib><creatorcontrib>Meng, Zhaozhong</creatorcontrib><creatorcontrib>Shi, Zhongfang</creatorcontrib><creatorcontrib>Wang, Yujiao</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Yuan, Fang</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><title>Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Atmospheric pressure plasma jet (APPJ) has shown excellent potential prospects in biomedical applications, based on the production of reactive oxygen species and reactive nitrogen species (RNS) from APPJ emissions. The current research focused on the protective effect of APPJ on oxygen and glucose deprivation (OGD)-induced cell death in both the H9C2 cardiac myoblast cell line, a frequently used cardiac cell line in cardioprotective studies, and primary neonatal rat cardiomyocytes (NRCMs). Cells were treated with APPJ for different durations, cultured for 6 h and then subjected to OGD for 18 h before their use in assays. We found that APPJ treatment could maintain H9C2 cell viability and reduce cell apoptosis in a dose-dependent manner in cells subjected to the OGD conditions. To confirm the cardioprotective effect of APPJ on primary NRCM, we first identified the 'safe dose' of APPJ treatment by evaluating the cytotoxicity of APPJ on primary NRCMs in normal culture conditions. Under the 'safe dose' of APPJ treatment, we also found that the APPJ treatment could maintain NRCM viability under OGD conditions and reduce CK-MB and cTnI release from cardiomyocytes. Further studies revealed that the cytoprotective effect of APPJ may be related to NO production induced by APPJ treatment. Our results gave the first evidence of the cardiotoxicity and cytoprotective effect of APPJ on cardiomyocytes against OGD injury, and furthermore, contributed to new insights into the potential medical applications of plasma in cardiovascular diseases.</description><subject>apoptosis</subject><subject>atmospheric pressure plasma</subject><subject>cardiomyocytes</subject><subject>nitric oxide</subject><subject>oxygen glucose deprivation</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtr3TAQhUVpobdp913Oqqu4kfyQrWW45FEIZJOuhSyNchVsyUhyiP9Wf2F0c0NXLQxoGJ1zOHyEfGf0J6PDcMEazire8uZCKYtCfSC7v6ePZEdpXVdNX_efyZeUniilHR_YjvzZbzksMWTU2T0joLVlg2BB5Tmk5YDRaVgiprRGhANObp1hmVSaFQQP4WV7RA_KG3icVh0SgsElumeVXfCV82bVaEDjNJUPlQ_gPNyKfQ1aReOUhnkLY4nL6S2kWGcVN_AYvMpqgqjySRqKUG8Z01fyyaop4bf394z8vr562N9Wd_c3v_aXd5Vu2iFXPYq2r1sU2lDdMmN6QbVARCp4odEVSoZ31jJmuBjG0YyWd6Ur40KMrO-bM0JPuTqGlCJa-V5OMiqPzOURsDwClifmxfLjZHFhkU9hjb4UlEZ2ddGW6VrK5GJsEZ7_Q_jf3FfghpZ8</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Yan, Xu</creator><creator>Zhang, Chenyang</creator><creator>Ouyang, Jiting</creator><creator>Meng, Zhaozhong</creator><creator>Shi, Zhongfang</creator><creator>Wang, Yujiao</creator><creator>Chen, Ye</creator><creator>Yuan, Fang</creator><creator>Ostrikov, Kostya (Ken)</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0072-4258</orcidid><orcidid>https://orcid.org/0000-0002-8532-0497</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid></search><sort><creationdate>20190327</creationdate><title>Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes</title><author>Yan, Xu ; Zhang, Chenyang ; Ouyang, Jiting ; Meng, Zhaozhong ; Shi, Zhongfang ; Wang, Yujiao ; Chen, Ye ; Yuan, Fang ; Ostrikov, Kostya (Ken)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7e94724e9cd0c41dd790c9eee0960025afed65ff11d698bbdbf65ced1699b1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>apoptosis</topic><topic>atmospheric pressure plasma</topic><topic>cardiomyocytes</topic><topic>nitric oxide</topic><topic>oxygen glucose deprivation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Ouyang, Jiting</creatorcontrib><creatorcontrib>Meng, Zhaozhong</creatorcontrib><creatorcontrib>Shi, Zhongfang</creatorcontrib><creatorcontrib>Wang, Yujiao</creatorcontrib><creatorcontrib>Chen, Ye</creatorcontrib><creatorcontrib>Yuan, Fang</creatorcontrib><creatorcontrib>Ostrikov, Kostya (Ken)</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xu</au><au>Zhang, Chenyang</au><au>Ouyang, Jiting</au><au>Meng, Zhaozhong</au><au>Shi, Zhongfang</au><au>Wang, Yujiao</au><au>Chen, Ye</au><au>Yuan, Fang</au><au>Ostrikov, Kostya (Ken)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>52</volume><issue>13</issue><spage>135401</spage><pages>135401-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Atmospheric pressure plasma jet (APPJ) has shown excellent potential prospects in biomedical applications, based on the production of reactive oxygen species and reactive nitrogen species (RNS) from APPJ emissions. The current research focused on the protective effect of APPJ on oxygen and glucose deprivation (OGD)-induced cell death in both the H9C2 cardiac myoblast cell line, a frequently used cardiac cell line in cardioprotective studies, and primary neonatal rat cardiomyocytes (NRCMs). Cells were treated with APPJ for different durations, cultured for 6 h and then subjected to OGD for 18 h before their use in assays. We found that APPJ treatment could maintain H9C2 cell viability and reduce cell apoptosis in a dose-dependent manner in cells subjected to the OGD conditions. To confirm the cardioprotective effect of APPJ on primary NRCM, we first identified the 'safe dose' of APPJ treatment by evaluating the cytotoxicity of APPJ on primary NRCMs in normal culture conditions. Under the 'safe dose' of APPJ treatment, we also found that the APPJ treatment could maintain NRCM viability under OGD conditions and reduce CK-MB and cTnI release from cardiomyocytes. Further studies revealed that the cytoprotective effect of APPJ may be related to NO production induced by APPJ treatment. Our results gave the first evidence of the cardiotoxicity and cytoprotective effect of APPJ on cardiomyocytes against OGD injury, and furthermore, contributed to new insights into the potential medical applications of plasma in cardiovascular diseases.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aafe9a</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0072-4258</orcidid><orcidid>https://orcid.org/0000-0002-8532-0497</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2019-03, Vol.52 (13), p.135401
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_aafe9a
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects apoptosis
atmospheric pressure plasma
cardiomyocytes
nitric oxide
oxygen glucose deprivation
title Cytoprotective effect of atmospheric pressure helium plasma on oxygen and glucose deprivation-induced cell death in H9C2 cardiac myoblasts and primary neonatal rat cardiomyocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cytoprotective%20effect%20of%20atmospheric%20pressure%20helium%20plasma%20on%20oxygen%20and%20glucose%20deprivation-induced%20cell%20death%20in%20H9C2%20cardiac%20myoblasts%20and%20primary%20neonatal%20rat%20cardiomyocytes&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Yan,%20Xu&rft.date=2019-03-27&rft.volume=52&rft.issue=13&rft.spage=135401&rft.pages=135401-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aafe9a&rft_dat=%3Ciop_cross%3Edaafe9a%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true