A novel growth mode of Physarum polycephalum during starvation

Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesopla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2018-06, Vol.51 (24), p.244002
Hauptverfasser: Lee, Jonghyun, Oettmeier, Christina, Döbereiner, Hans-Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 244002
container_title Journal of physics. D, Applied physics
container_volume 51
creator Lee, Jonghyun
Oettmeier, Christina
Döbereiner, Hans-Günther
description Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.
doi_str_mv 10.1088/1361-6463/aac2b0
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_aac2b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daac2b0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFbvHvfkydjZj2yzF6EUq0JBD3peNvvRpKTZsJtW-t-bEvEkwsAww3vD-w1CtwQeCBTFjDBBMsEFm2ltaAlnaPK7OkcTAEozNqfzS3SV0hYAclGQCXpc4DYcXIM3MXz1Fd4F63Dw-L06Jh33O9yF5mhcV-lmGOw-1u0Gp17Hg-7r0F6jC6-b5G5--hR9rp4-li_Z-u35dblYZ4YR0mempJILaaEgxhcSSsnBy3yeS-aZcd4Kr7kVOXVclxxIrq2VRurClqWm4NkUwXjXxJBSdF51sd7peFQE1IlfnWDVCVaN_IPlfrTUoVPbsI_tEPA_-d0fcqtyoigfig8fVJ317Bv5h2n7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel growth mode of Physarum polycephalum during starvation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</creator><creatorcontrib>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</creatorcontrib><description>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aac2b0</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive search ; chemotaxis ; diffusion</subject><ispartof>Journal of physics. D, Applied physics, 2018-06, Vol.51 (24), p.244002</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</citedby><cites>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</cites><orcidid>0000-0001-7408-1059 ; 0000-0003-1691-634X ; 0000-0002-6977-910X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aac2b0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><title>A novel growth mode of Physarum polycephalum during starvation</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</description><subject>adaptive search</subject><subject>chemotaxis</subject><subject>diffusion</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFbvHvfkydjZj2yzF6EUq0JBD3peNvvRpKTZsJtW-t-bEvEkwsAww3vD-w1CtwQeCBTFjDBBMsEFm2ltaAlnaPK7OkcTAEozNqfzS3SV0hYAclGQCXpc4DYcXIM3MXz1Fd4F63Dw-L06Jh33O9yF5mhcV-lmGOw-1u0Gp17Hg-7r0F6jC6-b5G5--hR9rp4-li_Z-u35dblYZ4YR0mempJILaaEgxhcSSsnBy3yeS-aZcd4Kr7kVOXVclxxIrq2VRurClqWm4NkUwXjXxJBSdF51sd7peFQE1IlfnWDVCVaN_IPlfrTUoVPbsI_tEPA_-d0fcqtyoigfig8fVJ317Bv5h2n7</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Lee, Jonghyun</creator><creator>Oettmeier, Christina</creator><creator>Döbereiner, Hans-Günther</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid></search><sort><creationdate>20180620</creationdate><title>A novel growth mode of Physarum polycephalum during starvation</title><author>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive search</topic><topic>chemotaxis</topic><topic>diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jonghyun</au><au>Oettmeier, Christina</au><au>Döbereiner, Hans-Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel growth mode of Physarum polycephalum during starvation</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>51</volume><issue>24</issue><spage>244002</spage><pages>244002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aac2b0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2018-06, Vol.51 (24), p.244002
issn 0022-3727
1361-6463
language eng
recordid cdi_crossref_primary_10_1088_1361_6463_aac2b0
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects adaptive search
chemotaxis
diffusion
title A novel growth mode of Physarum polycephalum during starvation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20growth%20mode%20of%20Physarum%20polycephalum%20during%20starvation&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Lee,%20Jonghyun&rft.date=2018-06-20&rft.volume=51&rft.issue=24&rft.spage=244002&rft.pages=244002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aac2b0&rft_dat=%3Ciop_cross%3Edaac2b0%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true