A novel growth mode of Physarum polycephalum during starvation
Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesopla...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2018-06, Vol.51 (24), p.244002 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 244002 |
container_title | Journal of physics. D, Applied physics |
container_volume | 51 |
creator | Lee, Jonghyun Oettmeier, Christina Döbereiner, Hans-Günther |
description | Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules. |
doi_str_mv | 10.1088/1361-6463/aac2b0 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6463_aac2b0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>daac2b0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFbvHvfkydjZj2yzF6EUq0JBD3peNvvRpKTZsJtW-t-bEvEkwsAww3vD-w1CtwQeCBTFjDBBMsEFm2ltaAlnaPK7OkcTAEozNqfzS3SV0hYAclGQCXpc4DYcXIM3MXz1Fd4F63Dw-L06Jh33O9yF5mhcV-lmGOw-1u0Gp17Hg-7r0F6jC6-b5G5--hR9rp4-li_Z-u35dblYZ4YR0mempJILaaEgxhcSSsnBy3yeS-aZcd4Kr7kVOXVclxxIrq2VRurClqWm4NkUwXjXxJBSdF51sd7peFQE1IlfnWDVCVaN_IPlfrTUoVPbsI_tEPA_-d0fcqtyoigfig8fVJ317Bv5h2n7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel growth mode of Physarum polycephalum during starvation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</creator><creatorcontrib>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</creatorcontrib><description>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/1361-6463/aac2b0</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>adaptive search ; chemotaxis ; diffusion</subject><ispartof>Journal of physics. D, Applied physics, 2018-06, Vol.51 (24), p.244002</ispartof><rights>2018 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</citedby><cites>FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</cites><orcidid>0000-0001-7408-1059 ; 0000-0003-1691-634X ; 0000-0002-6977-910X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6463/aac2b0/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><title>A novel growth mode of Physarum polycephalum during starvation</title><title>Journal of physics. D, Applied physics</title><addtitle>JPhysD</addtitle><addtitle>J. Phys. D: Appl. Phys</addtitle><description>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</description><subject>adaptive search</subject><subject>chemotaxis</subject><subject>diffusion</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFbvHvfkydjZj2yzF6EUq0JBD3peNvvRpKTZsJtW-t-bEvEkwsAww3vD-w1CtwQeCBTFjDBBMsEFm2ltaAlnaPK7OkcTAEozNqfzS3SV0hYAclGQCXpc4DYcXIM3MXz1Fd4F63Dw-L06Jh33O9yF5mhcV-lmGOw-1u0Gp17Hg-7r0F6jC6-b5G5--hR9rp4-li_Z-u35dblYZ4YR0mempJILaaEgxhcSSsnBy3yeS-aZcd4Kr7kVOXVclxxIrq2VRurClqWm4NkUwXjXxJBSdF51sd7peFQE1IlfnWDVCVaN_IPlfrTUoVPbsI_tEPA_-d0fcqtyoigfig8fVJ317Bv5h2n7</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Lee, Jonghyun</creator><creator>Oettmeier, Christina</creator><creator>Döbereiner, Hans-Günther</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid></search><sort><creationdate>20180620</creationdate><title>A novel growth mode of Physarum polycephalum during starvation</title><author>Lee, Jonghyun ; Oettmeier, Christina ; Döbereiner, Hans-Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-cb29469d081cf890b940f957593f3cefd6fa4d652e4ab4015add9c9a8dbba20f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive search</topic><topic>chemotaxis</topic><topic>diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jonghyun</creatorcontrib><creatorcontrib>Oettmeier, Christina</creatorcontrib><creatorcontrib>Döbereiner, Hans-Günther</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jonghyun</au><au>Oettmeier, Christina</au><au>Döbereiner, Hans-Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel growth mode of Physarum polycephalum during starvation</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><stitle>JPhysD</stitle><addtitle>J. Phys. D: Appl. Phys</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>51</volume><issue>24</issue><spage>244002</spage><pages>244002-</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>Organisms are constantly looking to forage and respond to various environmental queues to maximize their chance of survival. This is reflected in the unicellular organism Physarum polycephalum, which is known to grow as an optimized network. Here, we describe a new growth pattern of Physarum mesoplasmodium, where sheet-like motile bodies termed 'satellites' are formed. This non-network pattern formation is induced only when nutrients are scarce, suggesting that it is a type of emergency response. Our goal is to construct a model to describe the behaviour of satellites based on negative chemotaxis. We conjecture a diffusion-based model which implements detection of a signal molecule above a threshold concentration. Then we calculate how far the satellites must travel until the concentration signal falls below the threshold. These calculated distances are in good agreement with the distances where satellites stop. Based on the Akaike weight analysis, our threshold model is at least 2.3 times more likely to be the better model than the others we have considered. Based on the model, we estimate the diffusion coefficient of this molecule, which corresponds to typical signalling molecules.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6463/aac2b0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7408-1059</orcidid><orcidid>https://orcid.org/0000-0003-1691-634X</orcidid><orcidid>https://orcid.org/0000-0002-6977-910X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2018-06, Vol.51 (24), p.244002 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6463_aac2b0 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | adaptive search chemotaxis diffusion |
title | A novel growth mode of Physarum polycephalum during starvation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20growth%20mode%20of%20Physarum%20polycephalum%20during%20starvation&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Lee,%20Jonghyun&rft.date=2018-06-20&rft.volume=51&rft.issue=24&rft.spage=244002&rft.pages=244002-&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/1361-6463/aac2b0&rft_dat=%3Ciop_cross%3Edaac2b0%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |