Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling

The spectroscopic constants including equilibrium distance, harmonic frequency and binding energy of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) are studied by using the closed-shell coupled-cluster theory with spin–orbit coupling (SOC) at the singles, doubles, and non-iterative triples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2023-06, Vol.56 (11), p.115102
Hauptverfasser: Xian, Wei-Qi, Zhang, Zhi-Peng, Tu, Zhe-Yan, Zhou, Hu, Li, Lian-Bi, Chen, Ai-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 115102
container_title Journal of physics. B, Atomic, molecular, and optical physics
container_volume 56
creator Xian, Wei-Qi
Zhang, Zhi-Peng
Tu, Zhe-Yan
Zhou, Hu
Li, Lian-Bi
Chen, Ai-Min
description The spectroscopic constants including equilibrium distance, harmonic frequency and binding energy of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) are studied by using the closed-shell coupled-cluster theory with spin–orbit coupling (SOC) at the singles, doubles, and non-iterative triples level [CCSD(T)] based on the two-component relativistic pseudo-potentials. The advantage of the adopted computational protocol is that the SOC is incorporated in the post-Hartree–Fock part (i.e. the couple-cluster iteration) which makes it possible to significantly improve the computational efficiency. The extrapolation to the complete basis set (CBS) limit is used to provide the most accurate computational values in the framework of the adopted theoretical approach. The computational values to the CBS limit show that the SOC effect decreases the equilibrium distance by 0.067 Å while the binding energy increases by 21.023 cm −1 for the heaviest Ba-Rn, but not significant in the Ba-Kr and Ba-Xe. To date, both experimental and theoretical spectroscopic constants for Ba-Rn are unavailable, the present work thus provides the reliable theoretical results of the ground state of Ba-Rn for the future investigations.
doi_str_mv 10.1088/1361-6455/accf70
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6455_accf70</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>baccf70</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-2d41beb22e8a302e691c36c603961700e21478d92490d073e774a625c069e9eb3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOP7sXWYlClO9Sdu0XbjQwT8UBFFwF9L01omMTUlSZHa-g4_hW_kkZhx1pZBLyMl3bm4OITsMDhiU5SFLBUtElueHSuu2gBUy-pVWyQiqPE0yKPJ1suH9EwBjJYcReb-bonUYjFYz6sPQzKltaZgi9T3q4KzXtjeaatv5oLrgf64fnR26JlpUwB-tMSrY50ifqOT2nO7FOqJXbkwfcExvu31aK48Ntd0Xre3Qz-JRzwYf0C006-b0xYRpfNx0H69v1tUmLEHTPW6RtVbNPG5_75vk_uz0bnKRXN-cX06OrxPNRRYS3mSsxppzLFUKHEXFdCq0gLQSrABAzrKibCqeVdBAkWJRZErwXIOosMI63SSw7Kvj973DVvbOPCs3lwzkImy5SFYukpXLsKNld2kxtpdPdnBdHFDWMheSsbhyBlz2TRvB8R_gv30_AY3Dj0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xian, Wei-Qi ; Zhang, Zhi-Peng ; Tu, Zhe-Yan ; Zhou, Hu ; Li, Lian-Bi ; Chen, Ai-Min</creator><creatorcontrib>Xian, Wei-Qi ; Zhang, Zhi-Peng ; Tu, Zhe-Yan ; Zhou, Hu ; Li, Lian-Bi ; Chen, Ai-Min</creatorcontrib><description>The spectroscopic constants including equilibrium distance, harmonic frequency and binding energy of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) are studied by using the closed-shell coupled-cluster theory with spin–orbit coupling (SOC) at the singles, doubles, and non-iterative triples level [CCSD(T)] based on the two-component relativistic pseudo-potentials. The advantage of the adopted computational protocol is that the SOC is incorporated in the post-Hartree–Fock part (i.e. the couple-cluster iteration) which makes it possible to significantly improve the computational efficiency. The extrapolation to the complete basis set (CBS) limit is used to provide the most accurate computational values in the framework of the adopted theoretical approach. The computational values to the CBS limit show that the SOC effect decreases the equilibrium distance by 0.067 Å while the binding energy increases by 21.023 cm −1 for the heaviest Ba-Rn, but not significant in the Ba-Kr and Ba-Xe. To date, both experimental and theoretical spectroscopic constants for Ba-Rn are unavailable, the present work thus provides the reliable theoretical results of the ground state of Ba-Rn for the future investigations.</description><identifier>ISSN: 0953-4075</identifier><identifier>EISSN: 1361-6455</identifier><identifier>DOI: 10.1088/1361-6455/accf70</identifier><identifier>CODEN: JPAPEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>coupled-cluster theory ; diatomic Ba-RG ; spectroscopic constants ; spin–orbit coupling ; two-component relativistic pseudo-potentials</subject><ispartof>Journal of physics. B, Atomic, molecular, and optical physics, 2023-06, Vol.56 (11), p.115102</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-2d41beb22e8a302e691c36c603961700e21478d92490d073e774a625c069e9eb3</cites><orcidid>0000-0003-1447-1834 ; 0000-0002-2756-1575 ; 0000-0002-9272-6532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6455/accf70/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Xian, Wei-Qi</creatorcontrib><creatorcontrib>Zhang, Zhi-Peng</creatorcontrib><creatorcontrib>Tu, Zhe-Yan</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Li, Lian-Bi</creatorcontrib><creatorcontrib>Chen, Ai-Min</creatorcontrib><title>Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling</title><title>Journal of physics. B, Atomic, molecular, and optical physics</title><addtitle>JPhysB</addtitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><description>The spectroscopic constants including equilibrium distance, harmonic frequency and binding energy of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) are studied by using the closed-shell coupled-cluster theory with spin–orbit coupling (SOC) at the singles, doubles, and non-iterative triples level [CCSD(T)] based on the two-component relativistic pseudo-potentials. The advantage of the adopted computational protocol is that the SOC is incorporated in the post-Hartree–Fock part (i.e. the couple-cluster iteration) which makes it possible to significantly improve the computational efficiency. The extrapolation to the complete basis set (CBS) limit is used to provide the most accurate computational values in the framework of the adopted theoretical approach. The computational values to the CBS limit show that the SOC effect decreases the equilibrium distance by 0.067 Å while the binding energy increases by 21.023 cm −1 for the heaviest Ba-Rn, but not significant in the Ba-Kr and Ba-Xe. To date, both experimental and theoretical spectroscopic constants for Ba-Rn are unavailable, the present work thus provides the reliable theoretical results of the ground state of Ba-Rn for the future investigations.</description><subject>coupled-cluster theory</subject><subject>diatomic Ba-RG</subject><subject>spectroscopic constants</subject><subject>spin–orbit coupling</subject><subject>two-component relativistic pseudo-potentials</subject><issn>0953-4075</issn><issn>1361-6455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOP7sXWYlClO9Sdu0XbjQwT8UBFFwF9L01omMTUlSZHa-g4_hW_kkZhx1pZBLyMl3bm4OITsMDhiU5SFLBUtElueHSuu2gBUy-pVWyQiqPE0yKPJ1suH9EwBjJYcReb-bonUYjFYz6sPQzKltaZgi9T3q4KzXtjeaatv5oLrgf64fnR26JlpUwB-tMSrY50ifqOT2nO7FOqJXbkwfcExvu31aK48Ntd0Xre3Qz-JRzwYf0C006-b0xYRpfNx0H69v1tUmLEHTPW6RtVbNPG5_75vk_uz0bnKRXN-cX06OrxPNRRYS3mSsxppzLFUKHEXFdCq0gLQSrABAzrKibCqeVdBAkWJRZErwXIOosMI63SSw7Kvj973DVvbOPCs3lwzkImy5SFYukpXLsKNld2kxtpdPdnBdHFDWMheSsbhyBlz2TRvB8R_gv30_AY3Dj0Q</recordid><startdate>20230614</startdate><enddate>20230614</enddate><creator>Xian, Wei-Qi</creator><creator>Zhang, Zhi-Peng</creator><creator>Tu, Zhe-Yan</creator><creator>Zhou, Hu</creator><creator>Li, Lian-Bi</creator><creator>Chen, Ai-Min</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1447-1834</orcidid><orcidid>https://orcid.org/0000-0002-2756-1575</orcidid><orcidid>https://orcid.org/0000-0002-9272-6532</orcidid></search><sort><creationdate>20230614</creationdate><title>Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling</title><author>Xian, Wei-Qi ; Zhang, Zhi-Peng ; Tu, Zhe-Yan ; Zhou, Hu ; Li, Lian-Bi ; Chen, Ai-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-2d41beb22e8a302e691c36c603961700e21478d92490d073e774a625c069e9eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>coupled-cluster theory</topic><topic>diatomic Ba-RG</topic><topic>spectroscopic constants</topic><topic>spin–orbit coupling</topic><topic>two-component relativistic pseudo-potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xian, Wei-Qi</creatorcontrib><creatorcontrib>Zhang, Zhi-Peng</creatorcontrib><creatorcontrib>Tu, Zhe-Yan</creatorcontrib><creatorcontrib>Zhou, Hu</creatorcontrib><creatorcontrib>Li, Lian-Bi</creatorcontrib><creatorcontrib>Chen, Ai-Min</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xian, Wei-Qi</au><au>Zhang, Zhi-Peng</au><au>Tu, Zhe-Yan</au><au>Zhou, Hu</au><au>Li, Lian-Bi</au><au>Chen, Ai-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling</atitle><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle><stitle>JPhysB</stitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><date>2023-06-14</date><risdate>2023</risdate><volume>56</volume><issue>11</issue><spage>115102</spage><pages>115102-</pages><issn>0953-4075</issn><eissn>1361-6455</eissn><coden>JPAPEH</coden><abstract>The spectroscopic constants including equilibrium distance, harmonic frequency and binding energy of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) are studied by using the closed-shell coupled-cluster theory with spin–orbit coupling (SOC) at the singles, doubles, and non-iterative triples level [CCSD(T)] based on the two-component relativistic pseudo-potentials. The advantage of the adopted computational protocol is that the SOC is incorporated in the post-Hartree–Fock part (i.e. the couple-cluster iteration) which makes it possible to significantly improve the computational efficiency. The extrapolation to the complete basis set (CBS) limit is used to provide the most accurate computational values in the framework of the adopted theoretical approach. The computational values to the CBS limit show that the SOC effect decreases the equilibrium distance by 0.067 Å while the binding energy increases by 21.023 cm −1 for the heaviest Ba-Rn, but not significant in the Ba-Kr and Ba-Xe. To date, both experimental and theoretical spectroscopic constants for Ba-Rn are unavailable, the present work thus provides the reliable theoretical results of the ground state of Ba-Rn for the future investigations.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6455/accf70</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1447-1834</orcidid><orcidid>https://orcid.org/0000-0002-2756-1575</orcidid><orcidid>https://orcid.org/0000-0002-9272-6532</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-4075
ispartof Journal of physics. B, Atomic, molecular, and optical physics, 2023-06, Vol.56 (11), p.115102
issn 0953-4075
1361-6455
language eng
recordid cdi_crossref_primary_10_1088_1361_6455_accf70
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects coupled-cluster theory
diatomic Ba-RG
spectroscopic constants
spin–orbit coupling
two-component relativistic pseudo-potentials
title Theoretical study of the spectroscopic constants of the ground state of the diatomic Ba-RG (RG = Kr, Xe, Rn) based on the coupled cluster theory with spin–orbit coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20spectroscopic%20constants%20of%20the%20ground%20state%20of%20the%20diatomic%20Ba-RG%20(RG%20=%20Kr,%20Xe,%20Rn)%20based%20on%20the%20coupled%20cluster%20theory%20with%20spin%E2%80%93orbit%20coupling&rft.jtitle=Journal%20of%20physics.%20B,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Xian,%20Wei-Qi&rft.date=2023-06-14&rft.volume=56&rft.issue=11&rft.spage=115102&rft.pages=115102-&rft.issn=0953-4075&rft.eissn=1361-6455&rft.coden=JPAPEH&rft_id=info:doi/10.1088/1361-6455/accf70&rft_dat=%3Ciop_cross%3Ebaccf70%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true