Static field limit of excitation probabilities in laser-atom interactions

We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004
Hauptverfasser: Galstyan, A, Shablov, V L, Popov, Yu V, Mota-Furtado, F, O'Mahony, P F, Piraux, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 85004
container_title Journal of physics. B, Atomic, molecular, and optical physics
container_volume 52
creator Galstyan, A
Shablov, V L
Popov, Yu V
Mota-Furtado, F
O'Mahony, P F
Piraux, B
description We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.
doi_str_mv 10.1088/1361-6455/ab0c33
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6455_ab0c33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpbab0c33</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd495uLNtZOvTfYoxY9CwYO9hySbQMq2WZII-u_dpeJJT8PMvPdm3kPolsADAaVWhLWkabkQK2PBMXaGFr-jc7SATrCGgxSX6KqUPQAhisICbd6rqdHhEP3Q4yEeYsUpYP_p4rxIRzzmZI2NQ6zRFxyPeDDF58bUdJi66rNxM65co4tghuJvfuoS7Z6fduvXZvv2slk_bhtHW1ab3gpG6XRfArdeWieo9ZRw1nUkcEmc7YIhTnippOBKAg3CAvUdaUnvOFsiOMm6nErJPugxx4PJX5qAnpPQs20929anJCbK3YkS06j36SMfp_-01YJqpUEJAK7HPky4-z9w_8p-A7J9a7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static field limit of excitation probabilities in laser-atom interactions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</creator><creatorcontrib>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</creatorcontrib><description>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</description><identifier>ISSN: 0953-4075</identifier><identifier>EISSN: 1361-6455</identifier><identifier>DOI: 10.1088/1361-6455/ab0c33</identifier><identifier>CODEN: JPAPEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic hydrogen ; excitation ; pulsed laser field ; Schrödinger equation ; static field limit</subject><ispartof>Journal of physics. B, Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</cites><orcidid>0000-0002-0287-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6455/ab0c33/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Galstyan, A</creatorcontrib><creatorcontrib>Shablov, V L</creatorcontrib><creatorcontrib>Popov, Yu V</creatorcontrib><creatorcontrib>Mota-Furtado, F</creatorcontrib><creatorcontrib>O'Mahony, P F</creatorcontrib><creatorcontrib>Piraux, B</creatorcontrib><title>Static field limit of excitation probabilities in laser-atom interactions</title><title>Journal of physics. B, Atomic, molecular, and optical physics</title><addtitle>JPB</addtitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><description>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</description><subject>atomic hydrogen</subject><subject>excitation</subject><subject>pulsed laser field</subject><subject>Schrödinger equation</subject><subject>static field limit</subject><issn>0953-4075</issn><issn>1361-6455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd495uLNtZOvTfYoxY9CwYO9hySbQMq2WZII-u_dpeJJT8PMvPdm3kPolsADAaVWhLWkabkQK2PBMXaGFr-jc7SATrCGgxSX6KqUPQAhisICbd6rqdHhEP3Q4yEeYsUpYP_p4rxIRzzmZI2NQ6zRFxyPeDDF58bUdJi66rNxM65co4tghuJvfuoS7Z6fduvXZvv2slk_bhtHW1ab3gpG6XRfArdeWieo9ZRw1nUkcEmc7YIhTnippOBKAg3CAvUdaUnvOFsiOMm6nErJPugxx4PJX5qAnpPQs20929anJCbK3YkS06j36SMfp_-01YJqpUEJAK7HPky4-z9w_8p-A7J9a7Y</recordid><startdate>20190428</startdate><enddate>20190428</enddate><creator>Galstyan, A</creator><creator>Shablov, V L</creator><creator>Popov, Yu V</creator><creator>Mota-Furtado, F</creator><creator>O'Mahony, P F</creator><creator>Piraux, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0287-7696</orcidid></search><sort><creationdate>20190428</creationdate><title>Static field limit of excitation probabilities in laser-atom interactions</title><author>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atomic hydrogen</topic><topic>excitation</topic><topic>pulsed laser field</topic><topic>Schrödinger equation</topic><topic>static field limit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galstyan, A</creatorcontrib><creatorcontrib>Shablov, V L</creatorcontrib><creatorcontrib>Popov, Yu V</creatorcontrib><creatorcontrib>Mota-Furtado, F</creatorcontrib><creatorcontrib>O'Mahony, P F</creatorcontrib><creatorcontrib>Piraux, B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galstyan, A</au><au>Shablov, V L</au><au>Popov, Yu V</au><au>Mota-Furtado, F</au><au>O'Mahony, P F</au><au>Piraux, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static field limit of excitation probabilities in laser-atom interactions</atitle><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle><stitle>JPB</stitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><date>2019-04-28</date><risdate>2019</risdate><volume>52</volume><issue>8</issue><spage>85004</spage><pages>85004-</pages><issn>0953-4075</issn><eissn>1361-6455</eissn><coden>JPAPEH</coden><abstract>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6455/ab0c33</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0287-7696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0953-4075
ispartof Journal of physics. B, Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004
issn 0953-4075
1361-6455
language eng
recordid cdi_crossref_primary_10_1088_1361_6455_ab0c33
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects atomic hydrogen
excitation
pulsed laser field
Schrödinger equation
static field limit
title Static field limit of excitation probabilities in laser-atom interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20field%20limit%20of%20excitation%20probabilities%20in%20laser-atom%20interactions&rft.jtitle=Journal%20of%20physics.%20B,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Galstyan,%20A&rft.date=2019-04-28&rft.volume=52&rft.issue=8&rft.spage=85004&rft.pages=85004-&rft.issn=0953-4075&rft.eissn=1361-6455&rft.coden=JPAPEH&rft_id=info:doi/10.1088/1361-6455/ab0c33&rft_dat=%3Ciop_cross%3Ejpbab0c33%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true