Static field limit of excitation probabilities in laser-atom interactions
We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact...
Gespeichert in:
Veröffentlicht in: | Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 85004 |
container_title | Journal of physics. B, Atomic, molecular, and optical physics |
container_volume | 52 |
creator | Galstyan, A Shablov, V L Popov, Yu V Mota-Furtado, F O'Mahony, P F Piraux, B |
description | We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail. |
doi_str_mv | 10.1088/1361-6455/ab0c33 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6455_ab0c33</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jpbab0c33</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrd495uLNtZOvTfYoxY9CwYO9hySbQMq2WZII-u_dpeJJT8PMvPdm3kPolsADAaVWhLWkabkQK2PBMXaGFr-jc7SATrCGgxSX6KqUPQAhisICbd6rqdHhEP3Q4yEeYsUpYP_p4rxIRzzmZI2NQ6zRFxyPeDDF58bUdJi66rNxM65co4tghuJvfuoS7Z6fduvXZvv2slk_bhtHW1ab3gpG6XRfArdeWieo9ZRw1nUkcEmc7YIhTnippOBKAg3CAvUdaUnvOFsiOMm6nErJPugxx4PJX5qAnpPQs20929anJCbK3YkS06j36SMfp_-01YJqpUEJAK7HPky4-z9w_8p-A7J9a7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static field limit of excitation probabilities in laser-atom interactions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</creator><creatorcontrib>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</creatorcontrib><description>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</description><identifier>ISSN: 0953-4075</identifier><identifier>EISSN: 1361-6455</identifier><identifier>DOI: 10.1088/1361-6455/ab0c33</identifier><identifier>CODEN: JPAPEH</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>atomic hydrogen ; excitation ; pulsed laser field ; Schrödinger equation ; static field limit</subject><ispartof>Journal of physics. B, Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</cites><orcidid>0000-0002-0287-7696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6455/ab0c33/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Galstyan, A</creatorcontrib><creatorcontrib>Shablov, V L</creatorcontrib><creatorcontrib>Popov, Yu V</creatorcontrib><creatorcontrib>Mota-Furtado, F</creatorcontrib><creatorcontrib>O'Mahony, P F</creatorcontrib><creatorcontrib>Piraux, B</creatorcontrib><title>Static field limit of excitation probabilities in laser-atom interactions</title><title>Journal of physics. B, Atomic, molecular, and optical physics</title><addtitle>JPB</addtitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><description>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</description><subject>atomic hydrogen</subject><subject>excitation</subject><subject>pulsed laser field</subject><subject>Schrödinger equation</subject><subject>static field limit</subject><issn>0953-4075</issn><issn>1361-6455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrd495uLNtZOvTfYoxY9CwYO9hySbQMq2WZII-u_dpeJJT8PMvPdm3kPolsADAaVWhLWkabkQK2PBMXaGFr-jc7SATrCGgxSX6KqUPQAhisICbd6rqdHhEP3Q4yEeYsUpYP_p4rxIRzzmZI2NQ6zRFxyPeDDF58bUdJi66rNxM65co4tghuJvfuoS7Z6fduvXZvv2slk_bhtHW1ab3gpG6XRfArdeWieo9ZRw1nUkcEmc7YIhTnippOBKAg3CAvUdaUnvOFsiOMm6nErJPugxx4PJX5qAnpPQs20929anJCbK3YkS06j36SMfp_-01YJqpUEJAK7HPky4-z9w_8p-A7J9a7Y</recordid><startdate>20190428</startdate><enddate>20190428</enddate><creator>Galstyan, A</creator><creator>Shablov, V L</creator><creator>Popov, Yu V</creator><creator>Mota-Furtado, F</creator><creator>O'Mahony, P F</creator><creator>Piraux, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0287-7696</orcidid></search><sort><creationdate>20190428</creationdate><title>Static field limit of excitation probabilities in laser-atom interactions</title><author>Galstyan, A ; Shablov, V L ; Popov, Yu V ; Mota-Furtado, F ; O'Mahony, P F ; Piraux, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-db5322001704be7bc52be2143991f471cb9fa1c5e787548702f5b02e9161dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atomic hydrogen</topic><topic>excitation</topic><topic>pulsed laser field</topic><topic>Schrödinger equation</topic><topic>static field limit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galstyan, A</creatorcontrib><creatorcontrib>Shablov, V L</creatorcontrib><creatorcontrib>Popov, Yu V</creatorcontrib><creatorcontrib>Mota-Furtado, F</creatorcontrib><creatorcontrib>O'Mahony, P F</creatorcontrib><creatorcontrib>Piraux, B</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galstyan, A</au><au>Shablov, V L</au><au>Popov, Yu V</au><au>Mota-Furtado, F</au><au>O'Mahony, P F</au><au>Piraux, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static field limit of excitation probabilities in laser-atom interactions</atitle><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle><stitle>JPB</stitle><addtitle>J. Phys. B: At. Mol. Opt. Phys</addtitle><date>2019-04-28</date><risdate>2019</risdate><volume>52</volume><issue>8</issue><spage>85004</spage><pages>85004-</pages><issn>0953-4075</issn><eissn>1361-6455</eissn><coden>JPAPEH</coden><abstract>We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born-Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to low-lying excited states, obtained with this formula, agree with those we get by solving the time-dependent Schrödinger equation. The domain of validity is discussed in detail.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6455/ab0c33</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0287-7696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-4075 |
ispartof | Journal of physics. B, Atomic, molecular, and optical physics, 2019-04, Vol.52 (8), p.85004 |
issn | 0953-4075 1361-6455 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6455_ab0c33 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | atomic hydrogen excitation pulsed laser field Schrödinger equation static field limit |
title | Static field limit of excitation probabilities in laser-atom interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20field%20limit%20of%20excitation%20probabilities%20in%20laser-atom%20interactions&rft.jtitle=Journal%20of%20physics.%20B,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Galstyan,%20A&rft.date=2019-04-28&rft.volume=52&rft.issue=8&rft.spage=85004&rft.pages=85004-&rft.issn=0953-4075&rft.eissn=1361-6455&rft.coden=JPAPEH&rft_id=info:doi/10.1088/1361-6455/ab0c33&rft_dat=%3Ciop_cross%3Ejpbab0c33%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |