The monotonicity method for inclusion detection and the time harmonic elastic wave equation
We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also includ...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2024-04, Vol.40 (4), p.45018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 45018 |
container_title | Inverse problems |
container_volume | 40 |
creator | Eberle-Blick, Sarah Pohjola, Valter |
description | We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method. |
doi_str_mv | 10.1088/1361-6420/ad2901 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_ad2901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipad2901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3piIvQucVxnRBVfUiWWMjFYrn1WXTVxSFxQ_3sSFTHB9O5O7z2dfoxdI9whKDXDQmImRQ4z4_IK8IRNfk-nbAK5lFkpEc_ZRd9vARAVzifsfbUhXscmptgEG9KB15Q20XEfOx4au9v3ITbcUSKbxsk0jqchk0JNfGO6esxx2pk-DfplPonTx96M3kt25s2up6sfnbK3x4fV4jlbvj69LO6XmS1ApgxF7uYCvFKGSrDWmzUpsy7QA4pKlJYgX4MSwy7nDq3MK1OZnEhgWSgpiimDY6_tYt935HXbhdp0B42gRzh6JKFHEvoIZ4jcHCMhtnob910zPKhDqwVooUGUgEq3zg_G2z-M__Z-Ax8PcxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Eberle-Blick, Sarah ; Pohjola, Valter</creator><creatorcontrib>Eberle-Blick, Sarah ; Pohjola, Valter</creatorcontrib><description>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/ad2901</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>linear elasticity ; monotonicity method ; shape reconstruction</subject><ispartof>Inverse problems, 2024-04, Vol.40 (4), p.45018</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</cites><orcidid>0000-0002-6441-7628 ; 0000-0002-4243-3643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/ad2901/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Eberle-Blick, Sarah</creatorcontrib><creatorcontrib>Pohjola, Valter</creatorcontrib><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><title>Inverse problems</title><addtitle>ip</addtitle><addtitle>Inverse Problems</addtitle><description>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</description><subject>linear elasticity</subject><subject>monotonicity method</subject><subject>shape reconstruction</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3piIvQucVxnRBVfUiWWMjFYrn1WXTVxSFxQ_3sSFTHB9O5O7z2dfoxdI9whKDXDQmImRQ4z4_IK8IRNfk-nbAK5lFkpEc_ZRd9vARAVzifsfbUhXscmptgEG9KB15Q20XEfOx4au9v3ITbcUSKbxsk0jqchk0JNfGO6esxx2pk-DfplPonTx96M3kt25s2up6sfnbK3x4fV4jlbvj69LO6XmS1ApgxF7uYCvFKGSrDWmzUpsy7QA4pKlJYgX4MSwy7nDq3MK1OZnEhgWSgpiimDY6_tYt935HXbhdp0B42gRzh6JKFHEvoIZ4jcHCMhtnob910zPKhDqwVooUGUgEq3zg_G2z-M__Z-Ax8PcxM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Eberle-Blick, Sarah</creator><creator>Pohjola, Valter</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6441-7628</orcidid><orcidid>https://orcid.org/0000-0002-4243-3643</orcidid></search><sort><creationdate>20240401</creationdate><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><author>Eberle-Blick, Sarah ; Pohjola, Valter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>linear elasticity</topic><topic>monotonicity method</topic><topic>shape reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle-Blick, Sarah</creatorcontrib><creatorcontrib>Pohjola, Valter</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle-Blick, Sarah</au><au>Pohjola, Valter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</atitle><jtitle>Inverse problems</jtitle><stitle>ip</stitle><addtitle>Inverse Problems</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>45018</spage><pages>45018-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/ad2901</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-6441-7628</orcidid><orcidid>https://orcid.org/0000-0002-4243-3643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2024-04, Vol.40 (4), p.45018 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6420_ad2901 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | linear elasticity monotonicity method shape reconstruction |
title | The monotonicity method for inclusion detection and the time harmonic elastic wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monotonicity%20method%20for%20inclusion%20detection%20and%20the%20time%20harmonic%20elastic%20wave%20equation&rft.jtitle=Inverse%20problems&rft.au=Eberle-Blick,%20Sarah&rft.date=2024-04-01&rft.volume=40&rft.issue=4&rft.spage=45018&rft.pages=45018-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/ad2901&rft_dat=%3Ciop_cross%3Eipad2901%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |