The monotonicity method for inclusion detection and the time harmonic elastic wave equation

We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2024-04, Vol.40 (4), p.45018
Hauptverfasser: Eberle-Blick, Sarah, Pohjola, Valter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 45018
container_title Inverse problems
container_volume 40
creator Eberle-Blick, Sarah
Pohjola, Valter
description We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.
doi_str_mv 10.1088/1361-6420/ad2901
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_ad2901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipad2901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM3piIvQucVxnRBVfUiWWMjFYrn1WXTVxSFxQ_3sSFTHB9O5O7z2dfoxdI9whKDXDQmImRQ4z4_IK8IRNfk-nbAK5lFkpEc_ZRd9vARAVzifsfbUhXscmptgEG9KB15Q20XEfOx4au9v3ITbcUSKbxsk0jqchk0JNfGO6esxx2pk-DfplPonTx96M3kt25s2up6sfnbK3x4fV4jlbvj69LO6XmS1ApgxF7uYCvFKGSrDWmzUpsy7QA4pKlJYgX4MSwy7nDq3MK1OZnEhgWSgpiimDY6_tYt935HXbhdp0B42gRzh6JKFHEvoIZ4jcHCMhtnob910zPKhDqwVooUGUgEq3zg_G2z-M__Z-Ax8PcxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Eberle-Blick, Sarah ; Pohjola, Valter</creator><creatorcontrib>Eberle-Blick, Sarah ; Pohjola, Valter</creatorcontrib><description>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/ad2901</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>linear elasticity ; monotonicity method ; shape reconstruction</subject><ispartof>Inverse problems, 2024-04, Vol.40 (4), p.45018</ispartof><rights>2024 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</cites><orcidid>0000-0002-6441-7628 ; 0000-0002-4243-3643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/ad2901/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Eberle-Blick, Sarah</creatorcontrib><creatorcontrib>Pohjola, Valter</creatorcontrib><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><title>Inverse problems</title><addtitle>ip</addtitle><addtitle>Inverse Problems</addtitle><description>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</description><subject>linear elasticity</subject><subject>monotonicity method</subject><subject>shape reconstruction</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM3piIvQucVxnRBVfUiWWMjFYrn1WXTVxSFxQ_3sSFTHB9O5O7z2dfoxdI9whKDXDQmImRQ4z4_IK8IRNfk-nbAK5lFkpEc_ZRd9vARAVzifsfbUhXscmptgEG9KB15Q20XEfOx4au9v3ITbcUSKbxsk0jqchk0JNfGO6esxx2pk-DfplPonTx96M3kt25s2up6sfnbK3x4fV4jlbvj69LO6XmS1ApgxF7uYCvFKGSrDWmzUpsy7QA4pKlJYgX4MSwy7nDq3MK1OZnEhgWSgpiimDY6_tYt935HXbhdp0B42gRzh6JKFHEvoIZ4jcHCMhtnob910zPKhDqwVooUGUgEq3zg_G2z-M__Z-Ax8PcxM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Eberle-Blick, Sarah</creator><creator>Pohjola, Valter</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6441-7628</orcidid><orcidid>https://orcid.org/0000-0002-4243-3643</orcidid></search><sort><creationdate>20240401</creationdate><title>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</title><author>Eberle-Blick, Sarah ; Pohjola, Valter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-142d740f88ae50ccfabe8ab31f014945ce02b0841f067d1c629a9a2ee41538643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>linear elasticity</topic><topic>monotonicity method</topic><topic>shape reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eberle-Blick, Sarah</creatorcontrib><creatorcontrib>Pohjola, Valter</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eberle-Blick, Sarah</au><au>Pohjola, Valter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monotonicity method for inclusion detection and the time harmonic elastic wave equation</atitle><jtitle>Inverse problems</jtitle><stitle>ip</stitle><addtitle>Inverse Problems</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>40</volume><issue>4</issue><spage>45018</spage><pages>45018-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>We consider the problem of reconstructing inhomogeneities in an isotropic elastic body using time harmonic waves. Here we extend the so called monotonicity method for inclusion detection and show how to determine certain types of inhomogeneities in the Lamé parameters and the density. We also included some numerical tests of the method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/ad2901</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0002-6441-7628</orcidid><orcidid>https://orcid.org/0000-0002-4243-3643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2024-04, Vol.40 (4), p.45018
issn 0266-5611
1361-6420
language eng
recordid cdi_crossref_primary_10_1088_1361_6420_ad2901
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects linear elasticity
monotonicity method
shape reconstruction
title The monotonicity method for inclusion detection and the time harmonic elastic wave equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A20%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monotonicity%20method%20for%20inclusion%20detection%20and%20the%20time%20harmonic%20elastic%20wave%20equation&rft.jtitle=Inverse%20problems&rft.au=Eberle-Blick,%20Sarah&rft.date=2024-04-01&rft.volume=40&rft.issue=4&rft.spage=45018&rft.pages=45018-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/ad2901&rft_dat=%3Ciop_cross%3Eipad2901%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true