Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging

This paper concerns the simultaneous reconstruction of a sound-soft cavity and its excitation sources from the total-field data. Using the single-layer potential representations on two measurement curves, this co-inversion problem can be decoupled into two inverse problems: an inverse cavity scatter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2023-06, Vol.39 (6), p.65004
Hauptverfasser: Zhang, Deyue, Guo, Yukun, Wang, Yinglin, Chang, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 65004
container_title Inverse problems
container_volume 39
creator Zhang, Deyue
Guo, Yukun
Wang, Yinglin
Chang, Yan
description This paper concerns the simultaneous reconstruction of a sound-soft cavity and its excitation sources from the total-field data. Using the single-layer potential representations on two measurement curves, this co-inversion problem can be decoupled into two inverse problems: an inverse cavity scattering problem and an inverse source problem. This novel decoupling technique is fast and easy to implement since it is based on a linear system of integral equations. Then the uncoupled subproblems are respectively solved by the modified optimization and sampling method. We also establish the uniqueness of this co-inversion problem and analyze the stability of our method. Several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.
doi_str_mv 10.1088/1361-6420/accc4f
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_accc4f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipaccc4f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-87d8bf1281e3aa5faf9d0cd3d1f9fc2859f6c5b112d560115908882f6b85df803</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKt3j_kAXZvZbdKsNylahYIXPcc0f0pKTWpmt9Bvb9aKN08zPN4b5v0IuQV2B0zKKTQCKjGr2VQbY2b-jIz-pHMyYrUQFRcAl-QKccsYgIT5iHwsUhXiwWUMKdLkqaZodNe5HOKGGn0I3ZHqaGnokIZY9Kh3FFOfjcN72sfw1bvoECfUOpP6_W7I_QQ-9abs1-TC6x26m985Ju9Pj2-L52r1unxZPKwqU0vWVXJu5dpDLcE1WnOvfWuZsY0F3_pi4a0Xhq8BastFeZ63pbSsvVhLbr1kzZiw012TE2J2Xu1zeSEfFTA1EFIDDjXgUCdCJTI5RULaq22pVKrh__Zvh8lpzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Zhang, Deyue ; Guo, Yukun ; Wang, Yinglin ; Chang, Yan</creator><creatorcontrib>Zhang, Deyue ; Guo, Yukun ; Wang, Yinglin ; Chang, Yan</creatorcontrib><description>This paper concerns the simultaneous reconstruction of a sound-soft cavity and its excitation sources from the total-field data. Using the single-layer potential representations on two measurement curves, this co-inversion problem can be decoupled into two inverse problems: an inverse cavity scattering problem and an inverse source problem. This novel decoupling technique is fast and easy to implement since it is based on a linear system of integral equations. Then the uncoupled subproblems are respectively solved by the modified optimization and sampling method. We also establish the uniqueness of this co-inversion problem and analyze the stability of our method. Several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/accc4f</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>co-inversion problem ; inverse cavity scattering ; inverse source problem ; optimization method ; sampling method</subject><ispartof>Inverse problems, 2023-06, Vol.39 (6), p.65004</ispartof><rights>2023 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-87d8bf1281e3aa5faf9d0cd3d1f9fc2859f6c5b112d560115908882f6b85df803</citedby><cites>FETCH-LOGICAL-c280t-87d8bf1281e3aa5faf9d0cd3d1f9fc2859f6c5b112d560115908882f6b85df803</cites><orcidid>0000-0003-4477-7666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/accc4f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,781,785,27926,27927,53848,53895</link.rule.ids></links><search><creatorcontrib>Zhang, Deyue</creatorcontrib><creatorcontrib>Guo, Yukun</creatorcontrib><creatorcontrib>Wang, Yinglin</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><title>Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging</title><title>Inverse problems</title><addtitle>ip</addtitle><addtitle>Inverse Problems</addtitle><description>This paper concerns the simultaneous reconstruction of a sound-soft cavity and its excitation sources from the total-field data. Using the single-layer potential representations on two measurement curves, this co-inversion problem can be decoupled into two inverse problems: an inverse cavity scattering problem and an inverse source problem. This novel decoupling technique is fast and easy to implement since it is based on a linear system of integral equations. Then the uncoupled subproblems are respectively solved by the modified optimization and sampling method. We also establish the uniqueness of this co-inversion problem and analyze the stability of our method. Several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.</description><subject>co-inversion problem</subject><subject>inverse cavity scattering</subject><subject>inverse source problem</subject><subject>optimization method</subject><subject>sampling method</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKt3j_kAXZvZbdKsNylahYIXPcc0f0pKTWpmt9Bvb9aKN08zPN4b5v0IuQV2B0zKKTQCKjGr2VQbY2b-jIz-pHMyYrUQFRcAl-QKccsYgIT5iHwsUhXiwWUMKdLkqaZodNe5HOKGGn0I3ZHqaGnokIZY9Kh3FFOfjcN72sfw1bvoECfUOpP6_W7I_QQ-9abs1-TC6x26m985Ju9Pj2-L52r1unxZPKwqU0vWVXJu5dpDLcE1WnOvfWuZsY0F3_pi4a0Xhq8BastFeZ63pbSsvVhLbr1kzZiw012TE2J2Xu1zeSEfFTA1EFIDDjXgUCdCJTI5RULaq22pVKrh__Zvh8lpzg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhang, Deyue</creator><creator>Guo, Yukun</creator><creator>Wang, Yinglin</creator><creator>Chang, Yan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4477-7666</orcidid></search><sort><creationdate>20230601</creationdate><title>Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging</title><author>Zhang, Deyue ; Guo, Yukun ; Wang, Yinglin ; Chang, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-87d8bf1281e3aa5faf9d0cd3d1f9fc2859f6c5b112d560115908882f6b85df803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>co-inversion problem</topic><topic>inverse cavity scattering</topic><topic>inverse source problem</topic><topic>optimization method</topic><topic>sampling method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Deyue</creatorcontrib><creatorcontrib>Guo, Yukun</creatorcontrib><creatorcontrib>Wang, Yinglin</creatorcontrib><creatorcontrib>Chang, Yan</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Deyue</au><au>Guo, Yukun</au><au>Wang, Yinglin</au><au>Chang, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging</atitle><jtitle>Inverse problems</jtitle><stitle>ip</stitle><addtitle>Inverse Problems</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>65004</spage><pages>65004-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>This paper concerns the simultaneous reconstruction of a sound-soft cavity and its excitation sources from the total-field data. Using the single-layer potential representations on two measurement curves, this co-inversion problem can be decoupled into two inverse problems: an inverse cavity scattering problem and an inverse source problem. This novel decoupling technique is fast and easy to implement since it is based on a linear system of integral equations. Then the uncoupled subproblems are respectively solved by the modified optimization and sampling method. We also establish the uniqueness of this co-inversion problem and analyze the stability of our method. Several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/accc4f</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4477-7666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2023-06, Vol.39 (6), p.65004
issn 0266-5611
1361-6420
language eng
recordid cdi_crossref_primary_10_1088_1361_6420_accc4f
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects co-inversion problem
inverse cavity scattering
inverse source problem
optimization method
sampling method
title Co-inversion of a scattering cavity and its internal sources: uniqueness, decoupling and imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co-inversion%20of%20a%20scattering%20cavity%20and%20its%20internal%20sources:%20uniqueness,%20decoupling%20and%20imaging&rft.jtitle=Inverse%20problems&rft.au=Zhang,%20Deyue&rft.date=2023-06-01&rft.volume=39&rft.issue=6&rft.spage=65004&rft.pages=65004-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/accc4f&rft_dat=%3Ciop_cross%3Eipaccc4f%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true